古脊椎动物学报 ›› 2024, Vol. 62 ›› Issue (1): 33-46.DOI: 10.19615/j.cnki.2096-9899.230917
收稿日期:
2022-05-26
出版日期:
2024-01-20
发布日期:
2024-01-17
通讯作者:
* wangshiqi@ivpp.ac.cn基金资助:
LI Chun-Xiao1,2, CHEN Jin2, WANG Shi-Qi2,*()
Received:
2022-05-26
Published:
2024-01-20
Online:
2024-01-17
Contact:
* wangshiqi@ivpp.ac.cn摘要:
间型三棱齿象(Trilophodon connexus Hopwood, 1935)长期以来被认为是中国嵌齿象属(Gomphotherium)的一个代表种。然而,由于其下颌联合部与下门齿的形态未知,这一归入存疑。重新研究了来自新疆准噶尔盆地北缘乌伦古河地区哈拉玛盖组的一件此前归为陕西嵌齿象相似种(Gomphotherium cf. G. shensiensis)的下颌。该下颌联合部伸长,呈深槽状,下门齿缺失,因此确定可归入豕棱齿象科(Choerolophodontidae)。进一步将间型三棱齿象的正型标本与其相比较,两者颊齿的关键特征完全一致,包括:高度丘型化,m3伸长,具有四脊,上下颊齿第二脊“人字型”(chevron)很弱,第二脊中附锥与前中心小尖不愈合,釉质褶皱、齿谷中小锥及白垩质发育弱或缺失。因此,间型三棱齿象事实上是一种豕棱齿象类而非嵌齿象。综上所述,暂将其改定为间型“豕棱齿象” (“Choerolophodon” connexus (Hopwood, 1935))。同时,以上特征与北美的索普颌门齿象(Gnathabelodon thorpei)比较接近。此外,在颌门齿象属和间型“豕棱齿象”中,颊齿第二脊呈“人字型”, 釉质褶皱、齿谷中小锥及白垩质发育强这些典型的豕棱齿象属(Choerolophodon)的特征较弱甚至缺失,但m3齿脊数变多,这表明颌门齿象属可能起源于东亚的间型“豕棱齿象”。
中图分类号:
李春晓, 陈津, 王世骐. 间型三棱齿象(Trilophodon connexus Hopwood, 1935)属于豕棱齿象类而非嵌齿象. 古脊椎动物学报, 2024, 62(1): 33-46.
LI Chun-Xiao, CHEN Jin, WANG Shi-Qi. Reassessment of Trilophodon connexus Hopwood, 1935 and attributing it to the Choerolophodontidae. Vertebrata Palasiatica, 2024, 62(1): 33-46.
Fig. 1 Terminology and measurements of gomphothere molars A. left m3 of “Choerolophodon” connexus, denoting the terminology of tooth crown; green color, pretrite crescentoids; blue color, pretrite central conules; B. molar crown measurements; C. molar height measurements. Abbreviations: L. length; H. height; Hpo. height of the posttrite side; Hpr. height of the pretrite side; W. width; W1, 2, …, 5. width of the 1st, 2nd, …, 5th loph(id)
Fig. 2 Mandible of “Choerolophodon” connexus and Gnathabelodon, in comparison with Gomphotherium A, B, G, K, O, Q. “Choerolophodon” connexus, IVPP V8567, from Halamagai Formation, Ulungur region: A. the original photo in Chen (1988:pl. 2, fig. 1); C, F, J, N. “C.” connexus, IVPP RV35015 (cast of the type specimen, PMU-M 3469), from Diaogou, Guanjiashan Formation (formerly Xianshuihe Formation), Xining Basin; D, H, L, P. Gnathabelodon thorpei, FHSU VP18, type specimen, from Ogallah, Kansas, U.S.A., late Clarendonian; note that the distal end of the mandibular symphysis is repaired by plaster; E, I, M. Gomphotherium tassyi, IVPP V22781, from Heijiagou, upper part of Zhangenbao Formation, Zhongning Region A-E. in dorsal view, showing the deep symphyseal groove and long or moderate distance bewteen the distal end of symphysis and the anterior end of the cheek tooth row; F-I. in left lateral view, showing the tube-like anterior mental foramen; J-M. in right medial view, showing long or moderate distance bewteen the distal end of symphysis and the anterior end of the cheek tooth row, as well as the thin distal end of symphysis; note that K-M were cut along the middle sagital plan from 3D models; N-Q. in distal view, showing the large mandibular channel (N), and thin bony wall of distal symphysis (P, Q); note that O (“C.” connexus, IVPP V8567) was cut from the same position as N (type), which has been broken. Abbreviations: amf. anterior mental foramen; i2. the second lower incisor (mandibular tusk); m2, 3. the second, third lower molar; mc. mandibular channel; rem. inc. alv. remnant of incisor alvoelus; st. symphyseal trough; thick/thin dis. sym. thick/thin distal symphysis; vas. imp. vascular impression for facial artery and vein. Scale bars without notations equal to 20 cm
Fig. 3 Cheek teeth of “Choerolophodon” connexus and Gnathabelodon A. “Choerolophodon” connexus, left m2 and m3, IVPP V8567; B. “C.” connexus, left m2 and m3, IVPP RV35015; C. “C.” connexus, right m2, IVPP V31357, from Halamagai Formation, Ulungur region; D. Gnathabelodon thorpei, left m2 and m3, FHSU VP18, type specimen; E. “C.” connexus, right M3, IVPP V8572, from Halamagai Formation, Ulungur region; F. “C.” connexus, left M3, IVPP RV35D49(cast of PMU-M 3045), from Diaogou, Xining Basin; G. Gn. thorpei, right M3, FHSU VP18 Abbreviations: li. lingual side; me. mesial side
no. | species | locality /region | locus | L | W | W1 | W2 | W3 | W4 | Hpo | W/L |
---|---|---|---|---|---|---|---|---|---|---|---|
*RV35D49 | “C.” connexus | Diaogou | l. M3 | 120.01 | 62.08 | 62.08 | 60.00 | 57.11 | 41.26(2) | 0.52 | |
*V8572 | “C.” connexus | Ulungur | r. M3 | 186.93 | 83.78 | 83.78 | 76.75 | 72.1 | 63.36 | 51.28(2) | 0.45 |
*V8573 | “C.” connexus | Ulungur | l. M3 | 170.72 | 82.74 | 82.74 | 77.1 | 72.31 | 50.86 | 50.41(3) | 0.48 |
*V8576 | “C.” connexus | Ulungur | l. M3 | 176.15 | 74.93 | 74.93 | 71.58 | 67.61 | 57.56 | 50.70(3) | 0.43 |
*V8574 | “C.” connexus | Ulungur | l. M3 | - | - | - | - | 67.24 | 59.95 | 57.15(3) | - |
VP18 | Gn. thorpei | Ogallah | r. M3 | 196.35 | 105.7 | 97.62 | 105.7 | 104.27 | 81.81 | 58.41+(3) | 0.54 |
*V8569 | “C.” connexus | Ulungur | l. dp4 | 71.83 | 37.82 | - | - | 37.82 | 33.12(2) | 0.53 | |
V31357 | “C.” connexus | Ulungur | r. m2 | 109.59 | 56.62 | 45.59 | 54.96 | 56.62 | 40.8+(3) | 0.52 | |
*V8567 | “C.” connexus | Ulungur | l. m2 | - | 56.93 | - | 52.02 | 56.93 | 33.32+(3) | - | |
*RV35015 | “C.” connexus | Diaogou | l. m2 | 103.49 | 45.13 | 38.97 | 45.13 | 50.23 | 0.44 | ||
V8567 | “C.” connexus | Ulungur | l. m3 | 158.44 | 65.19 | - | 63.71 | 65.19 | 53.66 | 45.62+(2) | 0.41 |
*RV35015 | “C.” connexus | Diaogou | l. m3 | 148.52 | 51.45 | 50.68 | 51.45 | - | - | 46.72+(2) | 0.35 |
*V18701 | “C.” connexus | Ulungur | l. m3 | 191.09 | 68.1 | 68.1 | 65.22 | 67.31 | 65.05 | 54.14(2) | 0.36 |
*V8571 | “C.” connexus | Ulungur | r. m3 | 172.02 | 76.04 | 68.37 | 76.04 | 67.32 | 52.38 | 58.51(2) | 0.44 |
*V8575 | “C.” connexus | Ulungur | l. m3 | 169.99 | 64.27 | 57.31 | 64.27 | 58.47 | 51.31 | 58.03(1) | 0.38 |
VP18 | Gn. thorpei | Ogallah | l. m3 | 209.85 | 91.15 | 80.65 | 89.44 | 91.15 | 78.91 | 66.37+(3) | 0.43 |
VP18 | Gn. thorpei | Ogallah | r. m3 | 198.82 | 91.53 | 79.96 | 90.03 | 91.53 | 74.24 | 67.45+(3) | 0.46 |
Table 1 Cheek teeth measurements of “Choerolophodon” connexus and Gnathabelodon thorpei (mm)
no. | species | locality /region | locus | L | W | W1 | W2 | W3 | W4 | Hpo | W/L |
---|---|---|---|---|---|---|---|---|---|---|---|
*RV35D49 | “C.” connexus | Diaogou | l. M3 | 120.01 | 62.08 | 62.08 | 60.00 | 57.11 | 41.26(2) | 0.52 | |
*V8572 | “C.” connexus | Ulungur | r. M3 | 186.93 | 83.78 | 83.78 | 76.75 | 72.1 | 63.36 | 51.28(2) | 0.45 |
*V8573 | “C.” connexus | Ulungur | l. M3 | 170.72 | 82.74 | 82.74 | 77.1 | 72.31 | 50.86 | 50.41(3) | 0.48 |
*V8576 | “C.” connexus | Ulungur | l. M3 | 176.15 | 74.93 | 74.93 | 71.58 | 67.61 | 57.56 | 50.70(3) | 0.43 |
*V8574 | “C.” connexus | Ulungur | l. M3 | - | - | - | - | 67.24 | 59.95 | 57.15(3) | - |
VP18 | Gn. thorpei | Ogallah | r. M3 | 196.35 | 105.7 | 97.62 | 105.7 | 104.27 | 81.81 | 58.41+(3) | 0.54 |
*V8569 | “C.” connexus | Ulungur | l. dp4 | 71.83 | 37.82 | - | - | 37.82 | 33.12(2) | 0.53 | |
V31357 | “C.” connexus | Ulungur | r. m2 | 109.59 | 56.62 | 45.59 | 54.96 | 56.62 | 40.8+(3) | 0.52 | |
*V8567 | “C.” connexus | Ulungur | l. m2 | - | 56.93 | - | 52.02 | 56.93 | 33.32+(3) | - | |
*RV35015 | “C.” connexus | Diaogou | l. m2 | 103.49 | 45.13 | 38.97 | 45.13 | 50.23 | 0.44 | ||
V8567 | “C.” connexus | Ulungur | l. m3 | 158.44 | 65.19 | - | 63.71 | 65.19 | 53.66 | 45.62+(2) | 0.41 |
*RV35015 | “C.” connexus | Diaogou | l. m3 | 148.52 | 51.45 | 50.68 | 51.45 | - | - | 46.72+(2) | 0.35 |
*V18701 | “C.” connexus | Ulungur | l. m3 | 191.09 | 68.1 | 68.1 | 65.22 | 67.31 | 65.05 | 54.14(2) | 0.36 |
*V8571 | “C.” connexus | Ulungur | r. m3 | 172.02 | 76.04 | 68.37 | 76.04 | 67.32 | 52.38 | 58.51(2) | 0.44 |
*V8575 | “C.” connexus | Ulungur | l. m3 | 169.99 | 64.27 | 57.31 | 64.27 | 58.47 | 51.31 | 58.03(1) | 0.38 |
VP18 | Gn. thorpei | Ogallah | l. m3 | 209.85 | 91.15 | 80.65 | 89.44 | 91.15 | 78.91 | 66.37+(3) | 0.43 |
VP18 | Gn. thorpei | Ogallah | r. m3 | 198.82 | 91.53 | 79.96 | 90.03 | 91.53 | 74.24 | 67.45+(3) | 0.46 |
Mandibular measurements | Gnathabelodon thorpei | Gomphotherium tassyi | “Choerolophodon” connexus | |
---|---|---|---|---|
FHSU VP18 | IVPP V22781 | IVPP V8567 | IVPP RV35015 | |
maximal length | 1490.8 | 1160.8 | 760.1 | 483.5+ |
symphyseal length | 587.4+ | 584.0 | 403.5+ | - |
maximal width | 596.1 | 492.7 | - | - |
posterior symphyseal width | 258.4 | 185.0 | 158.6 | 161.4 |
anterior symphyseal width | - | 114.6 | - | - |
maximum symphyseal width | 221.9 | 186.3 | - | - |
minimum symphyseal width | 176.5 | 108.1 | 83.4 | - |
maximum width of the rostral trough | 214.8 | - | - | - |
minimum width of rostral trough | 168.7 | - | 80.2 | 50.3 |
internal width between anterior alveoli (or grinding teeth if the alveoli are resorbed) | 89.4 | 76.4 | - | 60.2 |
maximum height of horizontal ramus (measurement taken perpendicular to the ventral border of the ramus) | 478.1 | 388.7 | - | 94.5 |
height of horizontal ramus taken at the root of the ascending branch (measurement as above) | 210.5 | 175.7 | - | 76.5 |
rostral height taken at the symphyseal border (measurement taken perpendicular to the ventral border of the symphyseal rostrum) | 207.5 | 120.5 | 98.5 | 61.2 |
rostral height taken at the tip of rostrum (measurement as above) | 169.0 | 98.4 | - | 47.0 |
maximum depth of the ascending ramus | 305.4 | 146.8 | - | 172.8 |
depth between gonion and the coronoid process | 310.8 | 172.4 | - | 191.1 |
mid-alveolar length taken on the buccal side between the anterior alveolus and the root of the ascending ramus | 335.8 | 243.0 | 245.4 | 236.0 |
rostral height taken at the tip of rostrum (measurement as above) | 169.0 | 98.4 | - | 47.0 |
maximum depth of the ascending ramus | 305.4 | 146.8 | - | 172.8 |
depth between gonion and the coronoid process | 310.8 | 172.4 | - | 191.1 |
mid-alveolar length taken on the buccal side between the anterior alveolus and the root of the ascending ramus | 335.8 | 243.0 | 245.4 | 236.0 |
Table 2 Mandibular measurements of “Choerolophodon” connexus, Gnathabelodon thorpei and Gomphotherium tassyi (mm)
Mandibular measurements | Gnathabelodon thorpei | Gomphotherium tassyi | “Choerolophodon” connexus | |
---|---|---|---|---|
FHSU VP18 | IVPP V22781 | IVPP V8567 | IVPP RV35015 | |
maximal length | 1490.8 | 1160.8 | 760.1 | 483.5+ |
symphyseal length | 587.4+ | 584.0 | 403.5+ | - |
maximal width | 596.1 | 492.7 | - | - |
posterior symphyseal width | 258.4 | 185.0 | 158.6 | 161.4 |
anterior symphyseal width | - | 114.6 | - | - |
maximum symphyseal width | 221.9 | 186.3 | - | - |
minimum symphyseal width | 176.5 | 108.1 | 83.4 | - |
maximum width of the rostral trough | 214.8 | - | - | - |
minimum width of rostral trough | 168.7 | - | 80.2 | 50.3 |
internal width between anterior alveoli (or grinding teeth if the alveoli are resorbed) | 89.4 | 76.4 | - | 60.2 |
maximum height of horizontal ramus (measurement taken perpendicular to the ventral border of the ramus) | 478.1 | 388.7 | - | 94.5 |
height of horizontal ramus taken at the root of the ascending branch (measurement as above) | 210.5 | 175.7 | - | 76.5 |
rostral height taken at the symphyseal border (measurement taken perpendicular to the ventral border of the symphyseal rostrum) | 207.5 | 120.5 | 98.5 | 61.2 |
rostral height taken at the tip of rostrum (measurement as above) | 169.0 | 98.4 | - | 47.0 |
maximum depth of the ascending ramus | 305.4 | 146.8 | - | 172.8 |
depth between gonion and the coronoid process | 310.8 | 172.4 | - | 191.1 |
mid-alveolar length taken on the buccal side between the anterior alveolus and the root of the ascending ramus | 335.8 | 243.0 | 245.4 | 236.0 |
rostral height taken at the tip of rostrum (measurement as above) | 169.0 | 98.4 | - | 47.0 |
maximum depth of the ascending ramus | 305.4 | 146.8 | - | 172.8 |
depth between gonion and the coronoid process | 310.8 | 172.4 | - | 191.1 |
mid-alveolar length taken on the buccal side between the anterior alveolus and the root of the ascending ramus | 335.8 | 243.0 | 245.4 | 236.0 |
[1] | Barbour E H, Sternberg G F, 1935. Gnathabelodon thorpei, gen. et sp. nov., a new mud-grubbing mastodon. Bull Nebr State Mus, 42: 395-403 |
[2] | Chen G F, 1988. Mastodont remains from the Miocene of Junggar Basin in Xinjiang. Vert PalAsiat, 26: 265-277 |
[3] | Chen G F, 2021. Basal synapsids and mammals:hyracoidea, proboscidea, etc. In: Qiu Z X, Li C K eds. Palaeovertebrata Sinica. Beijing: Science Press. 1-231 |
[4] | Chow M C, Chang Y P, 1974. Chinese Fossil Elephantoids. Beijing: Science Press. 1-74 |
[5] | Gaziry A W, 1987. New mammals from the Jabal Zaltan site, Libya. Senckenbergiana Lethaea, 68: 69-89 |
[6] | Hopwood A T, 1935. Fossil Proboscidea from China. Palaeontol Sin, Sér C, 9: 1-108 |
[7] |
Konidaris G E, Koufos G D, Kostopoulos D S et al., 2016. Taxonomy, biostratigraphy and palaeoecology of Choerolophodon (Proboscidea, Mammalia) in the Miocene of SE Europe-SW Asia: implications for phylogeny and biogeography. J Syst Palaeont, 14: 1-27
DOI URL |
[8] | Li, C X, Wang S Q, Hao C L et al., 2018. A textual research of the early localities of fossil Gomphotherium in the Xining Basin with relevant stratigraphic correlation. J Stratigr, 42: 313-324 |
[9] | Li C X, Wang S Q, Mothé D et al., 2019. New fossils of Early and Middle Miocene Choerolophodon from northern China reveal a Holarctic distribution of Choerolophodontidae. J Vert Paleont, 39: e1618864 |
[10] | Li C X, Wang S Q, Yang Q, 2022. Discovery of a primitive Gomphotherium from the Early Miocene of northern China and its biochronology and palaeobiogeography significance. Hist Biol, doi: 10.1080/08912963.2022.2077106 |
[11] |
MacInnes D G, 1942. Miocene and post-Miocene Proboscidea from east Africa. Trans Zool Soc London, 25: 33-106
DOI URL |
[12] | Maglio V J, 1974. A new proboscidean from the Late Miocene of Kenya. Palaeontology, 17: 699-705 |
[13] | Matthews S C, 1973. Notes on open nomenclature and on synonymy lists. Palaeontology, 16: 713-719 |
[14] | Osborn H F, 1936. Proboscidea: a Monograph of the Discovery, Evolution, Migration and Extinction of the Mastodonts and Elephants of the World. New York: The American Museum Press. 1-802 |
[15] |
Pickford M, 2001. Afrochoerodon nov. gen. kisumuensis (MacInnes) (Proboscidea, Mammalia) from Cheparawa, Middle Miocene, Kenya. Ann Paléont, 87: 99-117
DOI URL |
[16] | Qiu Z D, Li C K, Wang S J, 1981. Miocene mammalian fossils from Xining Basin, Qinghai. Vert PalAsiat, 19: 156-173 |
[17] |
Sanders W J, Miller E R, 2002. New proboscideans from the Early Miocene of Wadi Moghara, Egypt. J Vert Paleont, 22: 388-404
DOI URL |
[18] | Sanders W J, Gheerbrant E, Harris J M et al., 2010. Proboscidea. In: Werdelin L, Sanders W J eds.eds. Cenozoic Mammals of Africa. Berkeley: University of California Press. 161-251 |
[19] |
Sellards E H, 1940. New Pliocene mastodon. Bull Geol Soc Am, 51: 1659-1664
DOI URL |
[20] |
Shoshani J, Tassy P, 2005. Advances in proboscidean taxonomy & classification, anatomy & physiology, and ecology & behavior. Quat Int, 126-128: 5-20
DOI URL |
[21] | Tassy P, 1983. Les Elephantoidea Miocènes du Plateau du Potwar, Groups de Siwalik, Pakistan. Ann Paléont, 69: 99-136, 235-297 |
[22] | Tassy P, 1985. La place des mastodontes Miocènes de l’ancien monde dans la phylogénie des Proboscidea (Mammalia): hypothèses et conjectures. Vol I-III. Thèse Doctorat ès Sciences. Paris: Université Pierre et Marie Curie. 1-861 |
[23] |
Tassy P, 2014. L'odontologie de Gomphotherium angustidens (Cuvier, 1817) (Proboscidea, Mammalia): données issues du gisement d'En Péjouan (Miocène moyen du Gers, France). Geodiversitas, 36(1): 35-115
DOI URL |
[24] | Tobien H, 1973. On the evolution of mastodonts (Proboscidea, Mammalia), part 1: the bunodont trilophodont groups. Notizbl Hess L-Amt Bodenforsch, 101: 202-276 |
[25] | Tobien H, 1980. A note on the skull and mandible of a new choerolophodont mastodont (Proboscidea, Mammalia) from the Middle Miocene of Chios (Aegean Sea, Greece). In: Jacobs L ed. Aspects of Vertebrate History: Essays in Honor of Edwin Harris Colbert. Flagstaff: Museum of Northern Arizona Press. 299-307 |
[26] | Tobien H, Chen G F, Li Y Q, 1986. Mastodonts (Proboscidea, Mammalia) from the Late Neogene and Early Pleistocene of the People’s Republic of China, part I: historical account: the genera Gomphotherium, Choerolophodon, Synconolophus, Amebelodon, Platybelodon, Sinomastodon. Mainzer Geowiss Mitt, 15: 119-181 |
[27] | Wang S Q, 2014. Gomphotherium inopinatum, a basal Gomphotherium species from the Linxia Basin, China, and other Chinese members of the genus. Vert PalAsiat, 52: 183-200 |
[28] |
Wang S Q, 2021. The anthracotheres from northern Junggar Basin and their palaeoclimatic significance in relation to the Tibetan Plateau. Palaeobio Palaeoenv, 101: 839-852
DOI |
[29] |
Wang S Q, Deng T, 2011. The first Choerolophodon (Proboscidea, Gomphotheriidae) skull from China. Sci China Earth Sci, 54: 1326-1337
DOI URL |
[30] |
Wang S Q, Duangkrayom J, Yang X W, 2015. Occurrence of the Gomphotherium angustidens group in China, based on a revision of Gomphotherium connexum (Hopwood, 1935) and Gomphotherium shensiensis Chang and Zhai, 1978: continental correlation of Gomphotherium species across the Palearctic. Paläont Z, 89: 1073-1086
DOI URL |
[31] |
Wang S Q, Li Y, Duangkrayom J et al., 2017. A new species of Gomphotherium (Proboscidea, Mammalia) from China and the evolution of Gomphotherium in Eurasia. J Vert Paleont, 37: 1-15
DOI URL |
[32] | Wang S Q, Zhang X X, Li C X, 2020. Reappraisal of Serridentinus gobiensis Osborn & Granger and Miomastodon tongxinensis Chen: the validity of Miomastodon. Vert PalAsiat, 58: 134-158 |
[33] | Wang S Q, Ye J, Meng J et al., 2022. Sexual selection promotes giraffoid head-neck evolution and ecological adaptation. Science, 376: 6597 |
[34] |
Wang S Q, Li C X, Li Y et al., 2023. Gomphotheres from Linxia Basin, China, and their significance in biostratigraphy, biochronology, and paleozoogeography. Palaeogeogr Palaeoclimat Palaeoecol, 613: 111405
DOI URL |
[35] |
Wu Y, Deng T, Hu Y W et al., 2018. A grazing Gomphotherium in Middle Miocene Central Asia, 10 million years prior to the origin of the Elephantidae. Sci Rep, 8: 7640
DOI |
[36] | Zhai R J, 1961. On a collection of Neogene mammals from Ching-An, eastern Kansu. Vert PalAsiat, (3): 262-268 |
[1] | Anek R. SANKHYAN, Olivier CHAVASSEAU. 印度Haritalyangar地区晚中新世猪类化石新材料. 古脊椎动物学报, 2024, 62(1): 69-84. |
[2] | 劳伦斯J.弗林, 李强, 吉学平, 王晓鸣. 云南晚中新世一巨型竹鼠. 古脊椎动物学报, 2023, 61(4): 277-283. |
[3] | 李世杰, 邓涛. 河北磁县九龙口中中新世动物群中真犀的再研究. 古脊椎动物学报, 2023, 61(3): 198-211. |
[4] | 张晓晓, 杨絮, 孙燕, 王洪江, 杨蓉, 陈善勤, 王世骐, 李虹. 中国中新世轭齿象类新材料及有关分类厘定. 古脊椎动物学报, 2023, 61(2): 142-160. |
[5] | 王伴月. 副竹鼠(拟速掘鼠亚科,鼠超科)一新种在甘肃临夏盆地的发现. 古脊椎动物学报, 2022, 60(4): 271-277. |
[6] | Henry GALIANO, 曾志杰, Nikos SOLOUNIAS, 王晓鸣, 邱占祥, Stuart C. WHITE. 甘肃临夏盆地中新世鬣狗科一新属新种. 古脊椎动物学报, 2022, 60(2): 81-116. |
[7] | 王世骐, 李春晓. 陕西嵌齿象与同心铲齿象同物异名考及铲齿象属一新种. 古脊椎动物学报, 2022, 60(2): 117-133. |
[8] | 张晓晓, 孙丹辉. 甘肃庆阳晚中新世板齿犀类的骰骨材料及其形态学意义. 古脊椎动物学报, 2022, 60(1): 29-41. |
[9] | 王世骐, 李春晓, 张晓晓. 乳齿象类的命名与中文译法及分类学问题讨论. 古脊椎动物学报, 2021, 59(4): 295-332. |
[10] | 李志恒, 艾莉达, Thomas A. STIDHAM, 王敏, 邓涛. 临夏盆地晚中新世鸵鸟化石的特异保存. 古脊椎动物学报, 2021, 59(3): 229-244. |
[11] | 王倩, 刘艳, 王李花, 傅明楷, 张兆群. 内蒙古韩家营玄武岩夹层中三趾马动物群化石. 古脊椎动物学报, 2021, 59(2): 125-137. |
[12] | 张立民, 董为, 倪喜军, 李强. 晚中新世晚期土城子小哺乳动物组合及土城子动物群在内蒙古中部地区新近纪哺乳动物群序列中的位置. 古脊椎动物学报, 2021, 59(1): 45-63. |
[13] | 邱铸鼎, 王晓鸣, 李强, 李录, 王洪江, 陈海峰. 内蒙古哈拉津胡舒晚中新世动物群. 古脊椎动物学报, 2021, 59(1): 19-26. |
[14] | 王伴月, 邱占祥. 豪猪化石在临夏盆地的新发现. 古脊椎动物学报, 2020, 58(3): 204-220. |
[15] | 王世骐, 张晓晓, 李春晓. 戈壁锯齿象(Serridentinus gobiensis Osborn & Granger, 1932)和同心中新乳齿象(Miomastodon tongxinensis Chen, 1978)再研究:关于粗壮型轭齿象(Zygolophodon)的讨论. 古脊椎动物学报, 2020, 58(2): 134-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||