古脊椎动物学报 ›› 2023, Vol. 61 ›› Issue (2): 142-160.DOI: 10.19615/j.cnki.2096-9899.230308
• • 上一篇
张晓晓1, 杨絮2, 孙燕2, 王洪江3, 杨蓉4, 陈善勤4, 王世骐5,*(), 李虹2,*()
收稿日期:
2022-07-04
出版日期:
2023-04-20
发布日期:
2023-04-18
通讯作者:
*wangshiqi@ivpp.ac.cn;基金资助:
ZHANG Xiao-Xiao1, YANG Xu2, SUN Yan2, WANG Hong-Jiang3, YANG Rong4, CHEN Shan-Qin4, WANG Shi-Qi5,*(), LI Hong2,*()
Received:
2022-07-04
Published:
2023-04-20
Online:
2023-04-18
Contact:
*wangshiqi@ivpp.ac.cn;摘要:
中国中新世的轭型齿长鼻类化石虽然分布广泛,但材料稀少,分类上经历了从多个轭齿象(Zygolophodon)种到全部归为戈壁轭齿象(Zygolophodon gobiensis)一个种的状态。戈壁轭齿象既包含轭型化程度较高的纤细型也包含介于轭型齿和丘型齿中间的粗壮型。最近,随着粗壮型被归入中新乳齿象属(Miomastodon)以及新材料的发现,有必要对中国中新世的轭齿象类进行重新厘定。结合已知的纤细型轭齿象颊齿材料和新发现的玛姆象科(Mammutidae)材料,对中国中新世轭齿象类材料进行研究,认为轭型化程度较高的纤细型种类包括内蒙古轭齿象(Z. nemonguensis)、格氏轭齿象(Z. gromovae)、集宁轭齿象(Z. jiningensis)、庆义轭齿象(Z. chinjiensis)以及归入小龙潭嵌齿象(Gomphotherium xiaolongtanensis)的两件标本,都应该归入传统意义上的轭齿象属,因为它们臼齿齿脊尖锐,主齿柱前后新月嵴成细嵴状,中心小尖消失或发育很弱,副齿柱中附锥分裂,轭齿嵴发育,侧视齿柱呈Ʌ形,齿谷V形,这些零散的颊齿形态与欧洲苏黎世轭齿象(Z. turicensis)正型标本相似,由于材料比较缺乏,暂将其归为苏黎世轭齿象相似种(Zygolophodon cf. Z. turicensis)。来自甘肃和政、内蒙古通古尔、宁夏同心和新疆准噶尔的新材料,轭型化程度较低,对应于介于轭型齿和丘型齿之间的粗壮型,将其分别归入中新乳齿象属的戈壁种(Miomastodon gobiensis)和同心种(M. tongxinensis)。与戈壁种相比,同心种的臼齿主齿柱前后新月嵴发育更弱,前后中心小尖更大。地质时代及地理分布表明,早中新世至中中新世中国北方的轭齿象类主要以Miomastodon为主。新材料的发现和对整个轭齿象类的重新厘定,为玛姆象类从欧亚大陆向北美的扩散以及在中国本土的演化提供了证据。
中图分类号:
张晓晓, 杨絮, 孙燕, 王洪江, 杨蓉, 陈善勤, 王世骐, 李虹. 中国中新世轭齿象类新材料及有关分类厘定. 古脊椎动物学报, 2023, 61(2): 142-160.
ZHANG Xiao-Xiao, YANG Xu, SUN Yan, WANG Hong-Jiang, YANG Rong, CHEN Shan-Qin, WANG Shi-Qi, LI Hong. New zygolophodonts from Miocene of China and their taxonomy. Vertebrata Palasiatica, 2023, 61(2): 142-160.
Fig. 1 Molars of Zygolophodon cf. Z. turicensis and Z. turicensis A-B. IVPP V2487, left M3 in occlusal (A) and lingual (B) views; C-D. IVPP RV74003, left M3 in occlusal (C) and lingual (D) views; E-F. IVPP V4688.1, left M3 in occlusal (E) and lingual (F) views;G. V4688.2, the posterior part of right M3 in occlusal view; H. V4685.7, anterior part of left M1 in occlusal view; I. V4685.8, posterior two lophs of right M1 in occlusal view; J. V5156, part of right M3 in occlusal view; K-L. V26802, left m3 in occlusal (K) and buccal (L) views; M-N. Zygolophodon turicensis, NMB OSM1288 (type cast), left m2 in occlusal (M) and buccal (N) views Abbreviations: cga, anterior cingulum; cgp, posterior cingulum; crz, zygodont crest; ctpra, anterior pretrite crescentoid; ctprp, posterior pretrite crescentoid; mcpo, posttrite main cusp; mcpr, pretrite main cusp;mepo, posttrite mesoconelet; mepr, pretrite mesoconelet
No. | Taxon | Specimen | L | W | W1 | W2 | W3 | W4 | Hpr(2) | Hpo(2) |
---|---|---|---|---|---|---|---|---|---|---|
IVPP V2487 | Z. cf. Z. turicensis | left M3 | 190.97 | 92.11 | 81.89 | 92.11 | 84.65 | 73.45 | 61.55 | 55.87 |
RV74003 | Z. cf. Z. turicensis | left M3 | 130.27 | 73.56 | 61.47 | 73.56 | 63.08 | 47.11 | 32.78+ | 41.56+ |
V4688.1 | Z. cf. Z. turicensis | left M3 | 178.32 | 93.18 | 89.33 | 93.18 | 82.51 | 70.01 | 63.52 | 62.56 |
V26802 | Z. cf. Z. turicensis | left m3 | 108.68+ | 72.91 | 72.92 | 72.01 | 64.76+ | 44.47+ | 27.37+ | |
1986-NMG-DM | Mio. gobiensis | left m3 | 189.85 | 94.42 | 87.98 | 94.42 | 90.52 | 72.93 | 46.33+ | 58.27 |
1986-NMG-DM | Mio. gobiensis | right m3 | 187.84 | 96.95 | 90.48 | 96.95 | 91.78 | 72.04 | 41.21+ | 58.97 |
HMV1808 | Mio. gobiensis | left m3 | 158.68 | 73.81 | 67.14 | 73.81 | 67.86 | 51.76 | 27.10+ | 35.25+ |
HMV1808 | Mio. gobiensis | right m3 | 148.99 | 71.22 | 67.38 | 71.22 | 64.81 | 46.98 | 26.62+ | 39.83+ |
IVPP V26615 | Mio. gobiensis | right m3 | 178.94 | 87.57 | 80.79 | 87.57 | 86.42 | |||
HMV1938 | Mio. gobiensis | right M3 | 147.18+ | 85.02 | 82.55 | 85.02 | 69.99 | 42.80 | ||
HMV1939 | Mio. gobiensis | right M2 | 129.56 | 85.11 | 77.18 | 82.41 | 85.11 | |||
IVPP V26803 | Mio. gobiensis | right M3 | 144.96 | 75.23 | 72.81 | 75.23 | 71.09 | 51.61 | 29.65+ | 47.02 |
IVPP V30715 | Mio. tongxinensis | right M3 | 92.82+ | 79.14 | 79.14 | 73.06 | 49.80 | 47.76 |
Table 1 Cheek teeth measurements of Zygolophodon and Miomastodon (mm)
No. | Taxon | Specimen | L | W | W1 | W2 | W3 | W4 | Hpr(2) | Hpo(2) |
---|---|---|---|---|---|---|---|---|---|---|
IVPP V2487 | Z. cf. Z. turicensis | left M3 | 190.97 | 92.11 | 81.89 | 92.11 | 84.65 | 73.45 | 61.55 | 55.87 |
RV74003 | Z. cf. Z. turicensis | left M3 | 130.27 | 73.56 | 61.47 | 73.56 | 63.08 | 47.11 | 32.78+ | 41.56+ |
V4688.1 | Z. cf. Z. turicensis | left M3 | 178.32 | 93.18 | 89.33 | 93.18 | 82.51 | 70.01 | 63.52 | 62.56 |
V26802 | Z. cf. Z. turicensis | left m3 | 108.68+ | 72.91 | 72.92 | 72.01 | 64.76+ | 44.47+ | 27.37+ | |
1986-NMG-DM | Mio. gobiensis | left m3 | 189.85 | 94.42 | 87.98 | 94.42 | 90.52 | 72.93 | 46.33+ | 58.27 |
1986-NMG-DM | Mio. gobiensis | right m3 | 187.84 | 96.95 | 90.48 | 96.95 | 91.78 | 72.04 | 41.21+ | 58.97 |
HMV1808 | Mio. gobiensis | left m3 | 158.68 | 73.81 | 67.14 | 73.81 | 67.86 | 51.76 | 27.10+ | 35.25+ |
HMV1808 | Mio. gobiensis | right m3 | 148.99 | 71.22 | 67.38 | 71.22 | 64.81 | 46.98 | 26.62+ | 39.83+ |
IVPP V26615 | Mio. gobiensis | right m3 | 178.94 | 87.57 | 80.79 | 87.57 | 86.42 | |||
HMV1938 | Mio. gobiensis | right M3 | 147.18+ | 85.02 | 82.55 | 85.02 | 69.99 | 42.80 | ||
HMV1939 | Mio. gobiensis | right M2 | 129.56 | 85.11 | 77.18 | 82.41 | 85.11 | |||
IVPP V26803 | Mio. gobiensis | right M3 | 144.96 | 75.23 | 72.81 | 75.23 | 71.09 | 51.61 | 29.65+ | 47.02 |
IVPP V30715 | Mio. tongxinensis | right M3 | 92.82+ | 79.14 | 79.14 | 73.06 | 49.80 | 47.76 |
Fig. 2 Mandibles of Miomastodon gobiensis A-C. 1986-NMG-DM in dorsal (A), lateral (B), and rostral (C) views;D-E. HMV1808 in dorsal (D) and rostral (E) views
Fig. 3 Molars of Miomastodon A-G. Mio. gobiensis: A. HMV1939, right M2 in occlusal view, B. HMV1938, right M3 in occlusal view,C. IVPP V26803, right M3 in occlusal view, D. 1986-NMG-DM, right m3 in occlusal view,E-F. IVPP V26615, right m3 in occlusal (E) and buccal (F) views, G. HMV1808, left m3 in occlusal view;H. Mio. tongxinensis, IVPP V30715, incomplete right M3 in occlusal view Abbreviations: ccpra. anterior pretrite central conule; ccprp. posterior pretrite central conule
1986-NMG-DM | HMV1808 | |
---|---|---|
Length of preserved symphyseal | 432.88 | |
Alveolar distance (from the most salient point of the trigonum retromolar to the symphyseal border of the corpus) | 363.28 | 320+ |
Width of corpus measured at the anterioralveolus (or the grinding tooth if the alveolus is entirely resorbed) | 120.51 | 70.32 |
Posterior symphyseal width | 270.88 | 193.48 |
Maximum symphyseal width | 136.04 | |
Minimum symphyseal width | 114.64 | 160.85 |
Maximum width of rostral trough | 100.40 | |
Minimum width of rostral trough | 41.27 | 46.96 |
Internal width between anterior alveoli (or grinding teeth if the alveoli are resorbed) | 116.78 | 72.20 |
Maximum height of corpus (measurement taken perpendicular to the ventral border of the corpus) | 220.12 | 97.53 |
Height of corpus measured at the root of the ramus (measurement as above) | 201.05 | 104.23 |
Rostral height measured at the symphyseal border (measurement taken perpendicular to the ventral border of the symphyseal rostrum) | 176.71 | 99.28 |
Mid-alveolar length measured on the buccal side between the anterior alveolus (or grinding tooth if the alveolus is resorbed) and the root of the ramus | 290.83 | 270 |
Table 2 Measurements of the mandibles of Miomastodon gobiensis, after Tassy (2013) (mm)
1986-NMG-DM | HMV1808 | |
---|---|---|
Length of preserved symphyseal | 432.88 | |
Alveolar distance (from the most salient point of the trigonum retromolar to the symphyseal border of the corpus) | 363.28 | 320+ |
Width of corpus measured at the anterioralveolus (or the grinding tooth if the alveolus is entirely resorbed) | 120.51 | 70.32 |
Posterior symphyseal width | 270.88 | 193.48 |
Maximum symphyseal width | 136.04 | |
Minimum symphyseal width | 114.64 | 160.85 |
Maximum width of rostral trough | 100.40 | |
Minimum width of rostral trough | 41.27 | 46.96 |
Internal width between anterior alveoli (or grinding teeth if the alveoli are resorbed) | 116.78 | 72.20 |
Maximum height of corpus (measurement taken perpendicular to the ventral border of the corpus) | 220.12 | 97.53 |
Height of corpus measured at the root of the ramus (measurement as above) | 201.05 | 104.23 |
Rostral height measured at the symphyseal border (measurement taken perpendicular to the ventral border of the symphyseal rostrum) | 176.71 | 99.28 |
Mid-alveolar length measured on the buccal side between the anterior alveolus (or grinding tooth if the alveolus is resorbed) and the root of the ramus | 290.83 | 270 |
Fig. 5 Cladistic analysis of the family Mammutidae The cladistic analysis is performed using TNT v.1.1 and new technology search, based on the characters provided in Appendix 1 and the data matrix in Appendix 2; CI (consistency index) = 0.807,RI (retention index) = 0.653
[1] | Andrews C W, 1906. A descriptive catalogue of the Tertiary Vertebrata of the Fayum, Egypt. London: British Museum of Natural History. 1-324 |
[2] | Borissiak A A, 1936. Mastodon atavus n. sp., der primitivste Vertreter der Gruppe Mio. angustidens. Trav Inst Paleozool, Acad Sci USSR, 5: 171-234 |
[3] | Březina J, 2014. Osteological Research on Mammals from the Czujanova sand pit (Mikulov) with Recpect to the Study of Proboscidea. Brno: Masaryk University, Faculty of Science. 1-110 |
[4] | Chen G F, 1978. Mastodont remains from the Miocene of Zhongning-Tongxin region in Ningxia. Vert PalAsiat, 16: 103-110 |
[5] | Chen G F, 1988. Mastodont remains from the Miocene of Junggar Basin in Xinjiang. Vert PalAsiat, 26: 265-277 |
[6] | Chen G F, 2021. Basal synapsids and mammals:hyracoidea, proboscidea, etc. In: Qiu Z X, Li C K eds. Palaeovertebrata Sinica. Beijing: Science Press. 1-231 |
[7] | Chow M Z, Chang Y P, 1961. New mastodonts from North China. Vert PalAsiat, (3): 245-255 |
[8] | Chow M C, Chang Y P, 1974. Chinese Fossil Elephantoids. Beijing: Science Press. 1-74 |
[9] | Chow M C, Chang Y P, You Y Z, 1978. Notes on some mastodons from Yunnan. Prof Pap Stratigr Palaeontol, 7: 68-74 |
[10] | Deng T, Hou S K, Wang S Q, 2019. Neogene integrative stratigraphy and timescale of China. Sci China Earth Sci, 49: 1-14 |
[11] | Duangkrayom J, Wang S Q, Deng T et al., 2017. The first Neogene record of Zygolophodon (Mammalia, Proboscidea) in Thailand: implications for the mammutid evolution and dispersal in Southeast Asia. J Paleontol, 1: 179-193 |
[12] | Dubrovo I A, 1970. New data to Miocene mastodonts of Inner Mongolia. In: Flerov K K ed.ed. Materials for the Evolutions of Continental Vertebrates. Moscow: Nauka. 135-140 |
[13] | Dubrovo I A, 1974. New data on mastodonts of western Mongolia. Tr Sovmestn Sov-Mong Paleont Eksped, 1: 64-73 |
[14] | Erdbriuk D P, 1967. A collection of mammalian fossils from S. E. Shansi, China. I. Publ Nat Hist Genoot Limburg, 17: 31-42 |
[15] | Göhlich U B, 1999. Order Proboscidea. In: Rössner G E, Heissig K eds. The Miocene Land Mammals of Europe. München: Verlag Dr. 157-168 |
[16] | Hopwood A T, 1935. Fossil Proboscidea from China. Palaeontol Sin, Ser C, 9: 1-108 |
[17] | Koenigswald W v, Widga C, Göhlich U B, 2021. New mammutids (Proboscidea) from the Clarendonian and Hemphillian of Oregon - a survey of Mio-Pliocene mammutids from North America. Bull Mus Nat Hist Oregon, 1-104 |
[18] | Lehmann U, 1950. Über Mastodontenreste in der Bayerischen Staatssammlung in München. Palaeontogr Abt A, 99: 121-228 |
[19] |
Li C X, Ji X P, Zhang S T et al., 2021. The new fossil record of Stegolophodon latidens from the Xiaolongtan locality, Yunnan, China, and the discussion on the age of the Lufengpithecus keiyuanensis. Chinese Sci Bull, 66: 1469-1481
DOI URL |
[20] |
Li C X, Wang S Q, Yang Q, 2023. Discovery of a primitive Gomphotherium from the Early Miocene of northern China and its biochronology and palaeobiogeography significance. Hist Biol, 35: 1-9
DOI URL |
[21] |
Li S H, Deng C L, Dong W et al., 2015. Magnetostratigraphy of the Xiaolongtan Formation bearing Lufengpithecus keiyuanensis in Yunnan, southwestern China: constraint on the initiation time of the southern segment of the Xianshuihe-Xiaojiang fault. Tectonophysics, 655: 213-226
DOI URL |
[22] |
Li Y, Zhang X X, Li C X et al., 2021. The first cranium of Miomastodon gobiensis and its biostratigraphic distribution. Chinese Sci Bull, 66: 1527-1538
DOI URL |
[23] | Lortet L, Chantre E, 1878. Recherches sur les mastodontes et les faunes mammalogiques qui les accompagnent. Arch Mus Hist Nat Lyon, 2: 285-311 |
[24] | Madden C T, 1980. Zygolophodon from Subsaharan Africa, with observations on the systematics of palaeomastodontid proboscideans. J Paleontol, 54: 57-64 |
[25] | Matsumoto H, 1924. A revision of Palaeomastodon dividing it into two genera, and with descriptions of two new species. Bull Am Mus Nat Hist, 50: 1-58 |
[26] | Mazo A V, 1996. Gomphotheres and mammutids from the Iberian Peninsula. In: Shoshani J, Tassy P eds. The Proboscidea Evolution and Paleoecology of Elephants and Their Relatives. Oxford: Oxford Science Publications. 136-142 |
[27] |
Mothé D, Avilla L S, Zhang D S et al., 2016. A new Mammutidae (Proboscidea, Mammalia) from the Late Miocene of Gansu Province, China. An Acad Bras Ciênc, 88: 65-74
DOI URL |
[28] | Osborn H F, 1921. The evolution, phylogeny, and classification of the Proboscidea. Am Mus Novit, 1: 1-15 |
[29] | Osborn H F, 1936. Proboscidea: a Monograph of the Discovery, Evolution, Migration and Extinction of the Mastodonts and Elephants of the World. New York: The American Museum Press. 1-802 |
[30] | Osborn H F, Granger W, 1932. Platybelodon grangeri, three growth stages, and a new Serridentine from Mongolia. Am Mus Novit, 537: 1-13 |
[31] | Pickford M, 2003. New Proboscidea from the Miocene strata in the lower Orange river valley, Namibia. Mem Geol Surv Namibia, 19: 207-256 |
[32] | Pickford M, Senut B, Mein P et al., 1995. The discovery of Lower and Middle Miocene vertebrates at Auchas, southern Namibia. C R Acad Sci Paris, 322: 901-906 |
[33] |
Qiu Z X, 2003. Dispersals of Neogene carnivorans between Asia and North America. Bull Am Mus Nat Hist, 279: 18-31
DOI URL |
[34] | Radović P, Bradić-Milinović K, 2018. A new elephantoid dental specimen from the Miocene of Kruševac basin in Central Serbia. Geol An Balk Poluos, 79(2): 1-10 |
[35] | Rasmussen D T, Gutierrez M, 2009. A mammalian fauna from the Late Oligocene of northwestern Kenya. Palaeontogr Abt A, 288: 1-52 |
[36] |
Sanders W J, Miller E R, 2002. New proboscideans from the Early Miocene of Wadi Moghara, Egypt. J Vert Paleont, 22: 388-404
DOI URL |
[37] | Sanders W J, Kappelman J, Rasmussen D T, 2004. New large-bodied mammals from the Late Oligocene site of Chilga, Ethiopia. Acta Palaeontol Pol, 49: 365-392 |
[38] | Sanders W J, Gheerbrant E, Harris J M et al., 2010. Proboscidea. In: Werdelin L, Sanders W J eds. Cenozoic Mammals of Africa. Berkeley, London: University of California Press. 161-251 |
[39] | Schlesinger G, 1917. Die Mastodonten des K. K. Naturhistorischen Hofmuseums. Denkschr K K Naturhist Hofm, Geol-Paläont, 1: 1-230 |
[40] | Shoshani J, Tassy P, 2005. Advances in proboscidean taxonomy and classification, anatomy and physiology, and ecology and behavior. Quat Int, 126-128: 5-20 |
[41] | Tassy P, 1985. La place des mastodontes Miocènes de l’ancien monde dans la phylogénie des Proboscidea (Mammalia):hypothèses et conjectures. Ph. D thesis. Paris: Université Pierre et Marie Curie. 1-861 |
[42] |
Tassy P, 2013. L'anatomie cranio-mandibulaire de Gomphotherium angustidens (Cuvier, 1817) (Proboscidea, Mammalia): données issues du gisement d'En Péjouan (Miocène moyen du Gers, France). Geodiversitas, 35: 377-445
DOI URL |
[43] |
Tassy P, 2014. L’odontologie de Gomphotherium angustidens (Cuvier, 1817) (Proboscidea, Mammalia): données issues du gisement d’En Péjouan (Miocène moyen du Gers, France). Geodiversitas, 36: 35-115
DOI URL |
[44] |
Tassy P, Pickford M, 1983. Un nouveau mastodonte zygolophodonte (Proboscidea, Mammalia) dans le Miocène inférieur d'Afrique orientale: Systématique et paléoenvironnement. Géobios, 16: 53-77
DOI URL |
[45] | Tobien H, 1972. Status of the genus Serridentinus Osborn 1923 (Proboscidea, Mammalia) and related forms. Mainzer Geowiss Mitt, 1: 143-191 |
[46] | Tobien H, 1978. The structure of the mastodont molar (Proboscidea, Mammalia). Part 3: the Oligocene mastodont genera Palaeomastodon, Phiomia and the Eo/Oligocene paenungulate Moeritherium. Mainzer Geowiss Mitt, 6: 177-208 |
[47] | Tobien H, 1996. Evolution of zygodons with emphasis on dentition. In: Shoshani J, Tassy P eds. The Proboscidea:Evolution and Palaeoecology of Elephants and Their Relatives. Oxford: Oxford University Press. 76-88 |
[48] | Tobien H, Chen G F, Li Y Q, 1988. Mastodonts (Proboscidea, Mammalia) from the Late Neogene and Early Pleistocene of the People’s Republic of China, part II, historical account: the genera Tetralophodon, Anancus, Stegotetrabelodon, Zygolophodon, Mammut, Stegolophodon. Mainzer Geowiss Mitt, 17: 95-220 |
[49] |
Tsoukala E, 2000. Remains of a Pliocene Mammut borsoni (Hays, 1834) (Proboscidea, Mammalia), from Milia (Grevena, W. Macedonia, Greece). Ann Paleontol, 86(3): 165-191
DOI URL |
[50] | Wang S Q, Li Y, Duangkrayom J et al., 2017. Early Mammut from the Upper Miocene of northern China, and its implications for the evolution and differentiation of Mammutidae. Vert PalAsiat, 55: 233-256 |
[51] | Wang S Q, Zhang X X, Li C X, 2020. Reappraisal of Serridentinus gobiensis Osborn & Granger and Miomastodon tongxinensis Chen: the validity of Miomastodon. Vert PalAsiat, 58: 134-158 |
[52] | Yan D F, 1979. Einige der Fossilen Miozänen Säugetiere der kreis von Fangxian in der Provinz Hupei. Vert PalAsiat, 17: 189-199 |
[53] | Ye J, Wu W Y, Ni X J et al., 2012. The Duolebulejin Section of northern Junggar Basin and its stratigraphic and environmental implication. Sci China Earth Sci, 10: 1523-1532 |
[54] | Zhang X X, Wang S Q, 2021. First report of Eozygodon (Mammutidae, Proboscidea) in Eurasia. Hist Biol, 33(9): 1661-1670 |
[1] | 李春晓, 陈津, 王世骐. 间型三棱齿象(Trilophodon connexus Hopwood, 1935)属于豕棱齿象类而非嵌齿象. 古脊椎动物学报, 2024, 62(1): 33-46. |
[2] | Anek R. SANKHYAN, Olivier CHAVASSEAU. 印度Haritalyangar地区晚中新世猪类化石新材料. 古脊椎动物学报, 2024, 62(1): 69-84. |
[3] | 劳伦斯J.弗林, 李强, 吉学平, 王晓鸣. 云南晚中新世一巨型竹鼠. 古脊椎动物学报, 2023, 61(4): 277-283. |
[4] | 李世杰, 邓涛. 河北磁县九龙口中中新世动物群中真犀的再研究. 古脊椎动物学报, 2023, 61(3): 198-211. |
[5] | 王伴月. 副竹鼠(拟速掘鼠亚科,鼠超科)一新种在甘肃临夏盆地的发现. 古脊椎动物学报, 2022, 60(4): 271-277. |
[6] | Henry GALIANO, 曾志杰, Nikos SOLOUNIAS, 王晓鸣, 邱占祥, Stuart C. WHITE. 甘肃临夏盆地中新世鬣狗科一新属新种. 古脊椎动物学报, 2022, 60(2): 81-116. |
[7] | 张晓晓, 孙丹辉. 甘肃庆阳晚中新世板齿犀类的骰骨材料及其形态学意义. 古脊椎动物学报, 2022, 60(1): 29-41. |
[8] | 西冈佑一郎, 甲能直树, 工藤雄一郎. 川渝地区“Proboselaphus watasei Matsumoto, 1915” 的分类学修订. 古脊椎动物学报, 2021, 59(3): 200-212. |
[9] | 李志恒, 艾莉达, Thomas A. STIDHAM, 王敏, 邓涛. 临夏盆地晚中新世鸵鸟化石的特异保存. 古脊椎动物学报, 2021, 59(3): 229-244. |
[10] | 王倩, 刘艳, 王李花, 傅明楷, 张兆群. 内蒙古韩家营玄武岩夹层中三趾马动物群化石. 古脊椎动物学报, 2021, 59(2): 125-137. |
[11] | 张立民, 董为, 倪喜军, 李强. 晚中新世晚期土城子小哺乳动物组合及土城子动物群在内蒙古中部地区新近纪哺乳动物群序列中的位置. 古脊椎动物学报, 2021, 59(1): 45-63. |
[12] | 邱铸鼎, 王晓鸣, 李强, 李录, 王洪江, 陈海峰. 内蒙古哈拉津胡舒晚中新世动物群. 古脊椎动物学报, 2021, 59(1): 19-26. |
[13] | 王伴月, 邱占祥. 豪猪化石在临夏盆地的新发现. 古脊椎动物学报, 2020, 58(3): 204-220. |
[14] | 王世骐, 张晓晓, 李春晓. 戈壁锯齿象(Serridentinus gobiensis Osborn & Granger, 1932)和同心中新乳齿象(Miomastodon tongxinensis Chen, 1978)再研究:关于粗壮型轭齿象(Zygolophodon)的讨论. 古脊椎动物学报, 2020, 58(2): 134-158. |
[15] | 王伴月, 邱占祥, 李绿洲. 甘肃和政晚中新世许氏鼠(啮齿类:鼠科)头骨化石. 古脊椎动物学报, 2020, 58(2): 120-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||