欢迎访问《古脊椎动物学报》官方网站,今天是

张氏西峡爪龙(兽脚类:阿尔瓦雷斯龙类)第二跖骨的骨组织学及其对“窄足型”足部结构发育的启示

展开
  • 1 中国科学院古脊椎动物与古人类研究所,中国科学院脊椎动物演化与人类起源重点实验室 北京 100044
    2 中国科学院生物演化与环境卓越创新中心 北京 100044
    3 中国科学院大学 北京 100049

收稿日期: 2019-03-26

  网络出版日期: 2019-07-20

基金资助

国家自然科学基金(41688103);国家自然科学基金(41120124002)

Metatarsal II osteohistology of Xixianykus zhangi (Theropoda: Alvarezsauria) and its implications for the development of the arctometatarsalian pes

Expand
  • 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044
    2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044
    3 University of Chinese Academy of Sciences Beijing 100049

Received date: 2019-03-26

  Online published: 2019-07-20

摘要

阿尔瓦雷斯龙类的一晚期演化支——张氏西峡爪龙(Xixianykus zhangi), 是体型最小的非鸟兽脚类恐龙之一。与其他阿尔瓦雷斯龙类类似,其胫跗骨和足部相对较长,并具有善于奔跑的兽脚类恐龙中常见的窄足型足部,指示其可能非常善于奔跑。对张氏西峡爪龙的第二跖骨进行了骨组织学研究,发现了两种罕见的骨组织学结构:放射状骨脉管和沙比纤维。认为这两种结构与其具有的窄足型足部有关,然而还需要对更多的兽脚类跖骨进行骨组织学研究来验证这一结论。

本文引用格式

秦子川, 赵祺, 徐星 . 张氏西峡爪龙(兽脚类:阿尔瓦雷斯龙类)第二跖骨的骨组织学及其对“窄足型”足部结构发育的启示[J]. 古脊椎动物学报, 2019 , 57(3) : 205 -213 . DOI: 10.19615/j.cnki.1000-3118.190425

Abstract

The late-branching alvarezsaurian Xixianykus zhangi is among the smallest known non-avialan theropods. With great similarity to its close relatives, it is highly cursorial as indicated by proportionally long lower segments of the hindlimbs and the presence of an arctometatarsalian pes-a highly modified structure that has been suggested to improve cursorial capability in theropods. Here we describe the osteohistology of the metatarsal II of the holotype of X. zhangi (XMDFEC V 0011). Two rarely reported histological features, radial vascular canals and Sharpey’s fibers, are presented in this study. We suggest that both features are related to the development of the arctometatarsalian pes; however, further investigations of metatarsal osteohistology in theropods are required for the validation of our interpretation.

参考文献

[1] Agnolin F L, Powell J E, Novas F E et al., 2012. New alvarezsaurid (Dinosauria: Theropoda) from uppermost Cretaceous of north-western Patagonia with associated eggs. Cretaceous Res, 35:33-56
[2] Alifanov V R, Barsbold R, 2009. Ceratonykus oculatus gen. et sp. nov., a new dinosaur (?Theropoda, Alvarezsauria) from the Late Cretaceous of Mongolia. Paleontol J, 43:94-106
[3] Averianov A, Sues H D, 2017. The oldest record of Alvarezsauridae (Dinosauria: Theropoda) in the Northern Hemisphere. PLoS One, 12:e0186254
[4] Bonaparte J F, 1991. Los vertebrados fósiles de la Formación Río Colorado, de la ciudad de Neuquén y cercanías, Cretácico superior, Argentina. Rev Mus Arg Ci Nat “Bernardino Rivadavia”, 4:17-123
[5] Canale J I, Cerda I, Novas F E et al., 2016. Small-sized abelisaurid (Theropoda: Ceratosauria) remains from the Upper Cretaceous of northwest Patagonia, Argentina. Cretaceous Res, 62:18-28
[6] Chiappe L M, Norell M A, Clark J M, 1998. The skull of a relative of the stem-group bird Mononykus. Nature, 392:275-278
[7] Chinsamy T A, 2005. The Microstructure of Dinosaur Bone: Deciphering Biology with Fine-Scale Techniques. Baltimore, Maryland: Johns Hopkins University Press. 50-51
[8] Chinsamy T A, Deratzian T, 2009. Pathologic bone tissues in a turkey vulture and a nonavian dinosaur: implications for interpreting endosteal bone and radial fibrolamellar bone in fossil dinosaurs. Anat Rec, 292:1478-1484
[9] Cubo J, Woodward H, Wolff E et al., 2015. First reported cases of biomechanically adaptive bone modeling in non-avian dinosaurs. PLoS One, 10:e0131131
[10] Curry K A, 1999. Ontogenetic histology of Apatosaurus (Dinosauria: Sauropoda): new insights on growth rates and longevity. J Vert Paleont, 19:654-665
[11] Erickson G M, 2014. On dinosaur growth. Annu Rev Earth Planet Sci, 42:675-697
[12] Erickson G M, Tumanova T A, 2000. Growth curve of Psittacosaurus mongoliensis Osborn (Ceratopsia: Psittacosauridae) inferred from long bone histology. J Linn Soc London Zool, 130:551-566
[13] Erickson G M, Rogers K C, Yerby S A, 2001. Dinosaurian growth patterns and rapid avian growth rates. Nature, 412:429-433
[14] Erickson G M, Makovicky P J, Currie P J et al., 2004. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature, 430:772-775
[15] Erickson G M, Rauhut O W, Zhou Z H et al., 2009. Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLoS One, 4:e7390
[16] Francillon V H, De Buffrénil V, Castanet J et al., 1990. Microstructure and mineralization of vertebrate skeletal tissues. In: Carter J G ed. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. New York: Van Nostrand Reinhold. 471-530
[17] Hieronymus T L, 2006. Quantitative microanatomy of jaw muscle attachment in extant diapsids. J Morphol, 267:954-967
[18] Holger P, Sander M, 2013. Histological evidence for muscle insertion in extant amniote femora: implications for muscle reconstruction in fossils. J Anat, 222(4):419-436
[19] Holtz T R, 1995. The arctometatarsalian pes, an unusual structure of the metatarsus of Cretaceous theropoda (Dinosaur: Saurischia). J Vert Paleont, 14:480-519
[20] Horner J R, Padian K, 2004. Age and growth dynamics of Tyrannosaurus rex. Proc Biol Sci, 271:1875-1880
[21] Hutchinson J R, Chiappe L M, 1998. The first known alvarezsaurid (Theropoda: Aves) from North America. J Vert Paleont, 18:447-450
[22] Jones S J, Boyde A, 1974. The organization and gross mineralization patterns of the collagen fibres in sharpey fibre bone. Cell Tiss, 148:83-96
[23] Karhu A A, Rautian A S, 1996. A new family of Maniraptora (Dinosauria: Saurischia) from the Late Cretaceous of Mongolia. Paleontol J, 30:583-592
[24] Klein N, 2004. Bone histology and growth of the prosauropod dinosaur Plateosaurus engelhardti von Meyer, 1837 from the Norian bonebeds of Trosoingen (Germany) and Frick (Switzerland). Ph. D thesis. Bonn: University of Bonn. 1-136
[25] Klein N, Sander M, 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology, 34:247-263
[26] Lee A H, O’Connor P M, 2013. Bone histology confirms determinate growth and small body size in the noasaurid theropod Masiakasaurus knopfleri. J Vert Paleont, 33:865-876
[27] Longrich N R, Currie P J, 2009. Albertonykus borealis, a new alvarezsaur (Dinosauria: Theropoda) from the Early Maastrichtian of Alberta, Canada: implications for the systematics and ecology of the Alvarezsauridae. Cretaceous Res, 30:239-252
[28] Margerie D E, Robin J P, Verrier D et al., 2004. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). J Exp Biol, 207:869-879
[29] Martinelli A G, Vera E, 2007. Achillesaurus manazzonei, a new alvarezsaurid theropod (Dinosauria) from the Late Cretaceous Bajo de la Carpa Formation, Río Negro Province, Argentina. Zootaxa, 1582:1-17
[30] Montes L, Roy N L, Perret M et al., 2010. Relationships between bone growth rate, body mass and resting metabolic rate in growing amniotes: a phylogenetic approach. Biol J Linn Soc, 92:63-76
[31] Naish D, Dyke G J, 2004. Heptasteornis was no ornithomimid, troodontid, dromaeosaurid or owl: the first alvarezsaurid (Dinosauria: Theropoda) from Europe. Neues Jahrb Geol Pal?ontol Monatsh, 7:385-401
[32] Nesbitt S J, Clarke J A, Turner A H et al., 2011. A small alvarezsaurid from the eastern Gobi Desert offers insight into evolutionary patterns in the Alvarezsauroidea. J Vert Paleont, 31:144-153
[33] Nicaise G M, Manzanares M C, Bulpa P et al., 1988. Calcified tissues involved in the ontogenesis of the human cranial vault. Anat Embry, 178:399-406
[34] Novas F E, 1997. Anatomy of Patagonykus puertai (Theropoda, Avialae, Alvarezsauridae), from the Late Cretaceous of Patagonia. J Vert Paleont, 17:137-166
[35] Padian K, Lamm E T, 2013. Bone Histology of Fossil Tetrapods. Berkeley, CA: University of California Press. 56-175
[36] Perle A, Norell M A, Chiappe L et al., 1993. Flightless bird from the Cretaceous of Mongolia. Nature, 362:623-626
[37] Pritchard J J, Scott J H, Girgis F G, 1956. The structure and development of cranial and facial sutures. J Anat, 90:73-86
[38] Ricqlès A D, Padian K, Horner J R et al., 2003. Osteohistology of Confuciusornis sanctus (Theropoda: Aves). J Vert Paleont, 23:373-386
[39] Sharpey W, 1848. In elements of anatomy. In: Quain R, Sharpey W eds. Bone or the Osseous Tissue. London: Taylor, Walton, and Marberly. London: Taylor, Walton, and Marberly, 973-974
[40] Snively E, Russell A P, 2003. Kinematic model of tyrannosaurid (Dinosauria: Theropoda) arctometatarsus function. J Morphol, 255:215-227
[41] Snively E, Russell A P, Powell G L, 2004. Evolutionary morphology of the coelurosaurian arctometatarsus: descriptive, morphometric and phylogenetic approaches. Zool J Linn Soc, 142:525-553
[42] Wang S, 2012. Histology of birds’ ulnar papillae and its CT microstructure reconstruction. M. S. thesis. Beijing: University of Chinese Academy of Sciences, 1-73
[43] Xu X, Wang D Y, Sullivan C et al., 2010. A basal parvicursorine (Theropoda: Alvarezsauridae) from the Upper Cretaceous of China. Zootaxa, 2413:1-19
[44] Xu X, Sullivan C, Pittman M et al., 2011. The first known monodactyl non-avian dinosaur and the complex evolution of the alvarezsauroid hand. Proc Natl Acad Sci USA, 108:2338-2342
[45] Xu X, Choiniere J, Tan Q et al., 2018. Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution. Curr Biol, 28:2853-2860
[46] Zhao Q, Benton M J, Sullivan C et al., 2013. Histology and postural change during the growth of the ceratopsian dinosaur Psittacosaurus lujiatunensis. Nat Commun, 4:2079
文章导航

/