欢迎访问《古脊椎动物学报》官方网站,今天是

前处理与测试条件差异对化石牙釉质羟磷灰石稳定同位素数据的影响:以步氏巨猿动物群为例

展开
  • 1 中国科学院古脊椎动物与古人类研究所,中国科学院脊椎动物演化与人类起源重点实验室 北京 100044
    2 中国科学院大学考古学与人类学系 北京 100049
    3 中国科学院生物演化与环境卓越创新中心 北京 100044
    4 复旦大学文物与博物馆学系 上海 200433
    5 复旦大学科技考古研究院 上海 200433

收稿日期: 2019-12-03

  网络出版日期: 2020-04-20

基金资助

中国科学院战略性先导科技专项(B类)(XDB26000000);国家自然科学基金资助(41773008)

Isotopic (C, O) variations of fossil enamel bioapatite caused by different preparation and measurement protocols: a case study of Gigantopithecus fauna

Expand
  • 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044
    2 Department of Archaeology and Anthropology, University of Chinese Academy of Sciences Beijing 100049
    3 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044
    4 Department of Cultural Heritage and Museology, Fudan University Shanghai 200433
    5 Institute of Archaeological Science, Fudan University Shanghai 200433

Received date: 2019-12-03

  Online published: 2020-04-20

摘要

牙釉质羟磷灰石的稳定同位素分析被广泛应用于古生物学研究之中,以重建古生态和古环境信息。在对不同研究中的同位素结果进行对比分析时,往往会忽略不同实验室、不同前处理方法可能引发的数据误差。为了探讨这些因素对牙釉质羟磷灰石同位素值的影响,重新测量了湖北省龙骨洞步氏巨猿动物群动物牙釉质样本的碳氧稳定同位素值,该批样本曾使用不同的前处理和实验方法进行过测试(Zhao et al., 2011;Nelson, 2014)。研究结果显示,重测的数据与Zhao et al. (2011)、Nelson (2014)发表的数据结果均存在一定差异。前处理方法与实验室测试差异都会造成牙釉质碳、氧稳定同位素结果的偏差。相较氧同位素而言,碳同位素值会更容易被前处理过程中反应试剂、反应时间等的不同所影响。但上述因素所导致的数据差异较小,不会对后续的分析产生实质性影响。本研究为直接对比不同来源牙釉质同位素值的可行性提供了初步的理论支持。建议为减少由于样品前处理和实验测试方案引发的数据误差,获得更加精确的研究结果,应尽可能采用同样的前处理与测试方案,多进行实验室间数据校正对比分析。

本文引用格式

姜曲怡, 赵凌霞, 胡耀武 . 前处理与测试条件差异对化石牙釉质羟磷灰石稳定同位素数据的影响:以步氏巨猿动物群为例[J]. 古脊椎动物学报, 2020 , 58(2) : 159 -168 . DOI: 10.19615/j.cnki.1000-3118.200109

Abstract

Stable isotopic (C, O) analysis of fossil enamel bioapatite has been widely used in paleontological fields to reconstruct the paleoecology and paleoenvironment. It is common to compare the isotopic data of enamel bioapatite made by different pretreatment and measuring methods in different labs, without considering the isotopic variations possibly caused by different protocols. Here, we chose the same samples from Gigantopithecus fauna in the Longgu Cave (Longgudong), Hubei and remeasured their δ13C and δ18O values, which had been previously reported in Zhao et al. (2011) and Nelson (2014) with different pretreatment and measuring methods, in order to evaluate the effects of the above factors on the isotopic variability. The comparison among three isotopic dataset indicates that there did exist small isotopic variations on the δ 13C and δ 18O values. It seems that the δ 13C values were more influenced, probably due to differential practices to eliminate the diagenetic effects using varied chemicals and retaining reaction time during the process of bioapatite preparation. However, we should emphasize that the small isotopic variations observed here do not have produced substantial isotopic variance among fossil taxa and localities, providing the preliminarily theoretical foundation to make isotopic comparison directly. Even so, we still recommend that it is best to compare the isotopic data according to the same preparing and measuring protocols to remove the systematic errors or to re-measure samples again in different labs to calibrate the data.

参考文献

[1] Bocherens H, Schrenk F, Chaimanee Y et al., 2017. Flexibility of diet and habitat in Pleistocene South Asian mammals: implications for the fate of the giant fossil ape Gigantopithecus. Quat Int, 434:148-155
[2] Chesson L A, Kenyhercz M W, Regan L A et al., 2019. Addressing data comparability in the creation of combined data sets of bioapatite carbon and oxygen isotopic compositions. Archaeometry, 61:1193-1206
[3] Clementz M T, 2012. New insight from old bones: stable isotope analysis of fossil mammals. J Mammal, 93:368-380
[4] Crowley B E, Wheatley P V, 2014. To bleach or not to bleach? Comparing treatment methods for isolating biogenic carbonate. Chem Geol, 381:234-242
[5] Demény A, Gugora A D, Kesjár D et al., 2019. Stable isotope analyses of the carbonate component of bones and teeth: the need for method standardization. J Archaeol Sci, 109:104979
[6] Garvie-Lok S J, Varney T L, Katzenberg M A, 2004. Preparation of bone carbonate for stable isotope analysis: the effects of treatment time and acid concentration. J Archaeol Sci, 31:763-776
[7] Gilg H A, Girard J P, Sheppard S M F, 2004. Conventional and less conventional techniques for hydrogen and oxygen isotope analysis of clays, associated minerals and pore waters in sediments and soils. In: Groot P A d ed. Handbook of Stable Isotope Analytical Techniques. Amsterdam: Elsevier Science. 38-61
[8] Kendall C, Eriksen A M H, Kontopoulos I et al., 2018. Diagenesis of archaeological bone and tooth. Palaeogeogr Palaeoclimatol Palaeoecol, 491:21-37
[9] Koch P L, Tuross N, Fogel M L, 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J Archaeol Sci, 24:417-429
[10] Kohn M J, 1999. You are what you eat. Science, 283:335-336
[11] Lee-Thorp J, Sponheimer M, 2014. Contribution of stable light isotopes to paleoenvironmental reconstruction. In: Henke W, Tattersall I eds. Handbook of Paleoanthropology. Berlin, Heidelberg: Springer Berlin Heidelberg. 441-464
[12] Ma J, Wang Y, Jin C Z et al., 2019. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat Sci Rev, 212:33-44
[13] Metcalfe J Z, Longstaffe F J, White C D, 2009. Method-dependent variations in stable isotope results for structural carbonate in bone bioapatite. J Archaeol Sci, 36:110-121
[14] Nelson S V, 2014. The paleoecology of early Pleistocene Gigantopithecus blacki inferred from isotopic analyses. Am J Phys Anthropol, 155:571-578
[15] Pellegrini M, Snoeck C, 2016. Comparing bioapatite carbonate pre-treatments for isotopic measurements: part 2-impact on carbon and oxygen isotope compositions. Chem Geol, 420:88-96
[16] Pestle W J, Crowley B E, Weirauch M T, 2014. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains. PLoS One, 9:e102844
[17] Price T D, Spicuzza M J, Orland I J et al., 2019. Instrumental investigation of oxygen isotopes in human dental enamel from the Bronze Age battlefield site at Tollense, Germany. J Archaeol Sci, 105:70-80
[18] Roberts P, Fernandes R, Craig O E et al., 2018. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Commun Mass Spectrom, 32:361-372
[19] Shin J Y, Hedges R E M, 2012. Diagenesis in bone and enamel apatite carbonate; the potential of density separation to assess the original composition. J Archaeol Sci, 39:1123-1130
[20] Skippington J, Veth P, Manne T et al., 2019. Preanalytical processing of archaeological mammal enamel apatite carbonates for stable isotope investigations: a comparative analysis of the effect of acid treatment on samples from Northwest Australia. Int J Osteoarchaeol, 29:760-771
[21] Snoeck C, Pellegrini M, 2015. Comparing bioapatite carbonate pre-treatments for isotopic measurements: part 1-impact on structure and chemical composition. Chem Geol, 417:394-403
[22] Sponheimer M, Lee-Thorp J, 2014. Hominin paleodiets: the contribution of stable isotopes. In: Henke W, Tattersall I eds. Handbook of Paleoanthropology. Berlin, Heidelberg: Springer Berlin Heidelberg. 671-701
[23] Stacklyn S, Wang Y, Jin C Z et al., 2017. Carbon and oxygen isotopic evidence for diets, environments and niche differentiation of early Pleistocene pandas and associated mammals in South China. Palaeogeogr Palaeoclimatol Palaeoecol, 468:351-361
[24] Suraprasit K, Bocherens H, Chaimanee Y et al., 2018. Late Middle Pleistocene ecology and climate in northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat Sci Rev, 193:24-42
[25] Yoder C J, Bartelink E J, 2010. Effects of different sample preparation methods on stable carbon and oxygen isotope values of bone apatite: a comparison of two treatment protocols. Archaeometry, 52:115-130
[26] Zazzo A, 2014. Bone and enamel carbonate diagenesis: a radiocarbon prospective. Palaeogeogr Palaeoclimatol Palaeoecol, 416:168-178
[27] Zhao L X, 2006. Comprehensive dental study on Gigantopithecus blacki. Ph. D thesis. Beijing: Graduate University of the Chinese Academy of Sciences. 1-115
[28] Zhao L X, Zhang L Z, Zhang F S et al., 2011. Enamel carbon isotope evidence of diet and habitat of Gigantopithecus blacki and associated mammalian megafauna in the Early Pleistocene of South China. Chinese Sci Bull, 56:3590-3595
文章导航

/