欢迎访问《古脊椎动物学报》官方网站,今天是

辽宁下白垩统沙海组和阜新组真三尖齿兽类戈壁尖齿兽科新材料

展开
  • 1 日本爱媛大学大学院理工学研究科 爱媛 790-8577
    2 中国科学院古脊椎动物与古人类研究所,中国科学院脊椎动物演化与人类起源重点实验室 北京 100044
    3 中国科学院生物演化与环境卓越创新中心 北京 100044
    4 中国科学院大学地球与行星科学学院 北京 100049

收稿日期: 2019-01-07

  网络出版日期: 2020-01-20

基金资助

中国科学院战略性先导科技专项(B类)(XDB18000000);国家自然科学基金(41688103);国家自然科学基金(41541015);日本学术振兴会青年科学家基金(B类)(24740349);日本学术振兴会青年科学家基金(B类)(16K17830)

New gobiconodontid (Eutriconodonta, Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, Liaoning, China

Expand
  • 1 Department of Earth’s Evolution and Environment, Graduate School of Science and Engineering, Ehime University Matsuyama, Ehime 790-8577, Japan
    2 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of VertebratePaleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China
    3 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044, China
    4 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049, China

Received date: 2019-01-07

  Online published: 2020-01-20

摘要

真三尖齿兽类是了解亚洲白垩纪哺乳动物群演化和转变的重要成员之一。到目前为止沙海组和阜新组(下白垩统上部)已经发现了两种戈壁尖齿兽科以及两种三尖齿兽科的真三尖齿兽类。描述了这些地层产出的真三尖齿兽类的其他材料,包括一新属新种——常氏阜新尖齿兽(Fuxinoconodon changi gen. et sp. nov.)和一枚左下臼齿(鉴定为 ?Gobiconodontidae gen. et sp. indet.)。这种新的真三尖齿兽类被归入戈壁尖齿兽科(Gobiconodontidae), 其特征为:第一下门齿大、门齿和前臼齿的数目变少、臼齿b尖和c尖较大而独立,以及臼齿具有分别属于Gobiconodon第一代或第二代臼齿上独有特征的组合。新材料与同一地区相同层位已经报道的4种真三尖齿兽类表明,虽然科级和属级的多样性似乎已经减少,但亚洲早白垩世晚期仍存在比较多样的真三尖齿兽类。

本文引用格式

楠桥直, 王元青, 李传夔, 金迅 . 辽宁下白垩统沙海组和阜新组真三尖齿兽类戈壁尖齿兽科新材料[J]. 古脊椎动物学报, 2020 , 58(1) : 45 -66 . DOI: 10.19615/j.cnki.1000-3118.190724

Abstract

Eutriconodontans are one of the key members of mammals to our understanding of the evolution and transition of mammalian fauna in Asia during the Cretaceous. Two gobiconodontid and two triconodontid species have previously been reported from the upper Lower Cretaceous Shahai and Fuxin formations. Here we describe two additional eutriconodontans from the formations, Fuxinoconodon changi gen. et sp. nov. and ?Gobiconodontidae gen. et sp. indet. This new species is attributed to the Gobiconodontidae, characterized by having an enlarged first lower incisor, reduction in the number of incisors and premolariforms, proportionally large cusps b and c being well distant from cusp a on the molariforms, presence of a labial cingulid, and a unique mixed combination of molariform characters seen on either the first or the second, but not both, generations of molariforms in Gobiconodon. Together with the four known species, eutriconodontans remained diverse to some extent in the late Early Cretaceous in Asia, although their family-level and generic level diversity appears to have been already reduced at that time.

参考文献

[1] Averianov A O, Skutschas P P, Lopatin A V et al., 2005. Early Cretaceous mammals from Bol’shoi Kemchug 3 locality in West Siberia, Russia. Russ J Theriol, 4(1):1-12
[2] Bi S D, Zheng X T, Wang X L et al., 2018. An Early Cretaceous eutherian and the placental-marsupial dichotomy. Nature, 558:390-395
[3] Bonaparte J F, 1986. Sobre Mesungulatum houssayi y nuevos mamíferos cretácicos de Patagonia. Actas IV Congr Argent Paleont Bioestratigr, 2:48-61
[4] Bonaparte J F, 1992. Una nueva especie de Triconodonta (Mammalia), de la Formación Los Alamitos, Provincia de Río Negro y comentarios sobre su fauna de mamíferos. Ameghiniana, 29(2):99-110
[5] Butler P M, Sigogneau-Russell D, 2016. Diversity of triconodonts in the Middle Jurassic of Great Britain. Palaeont Pol, 67:35-65
[6] Chow M C, Rich T H V, 1984. A new triconodontan (Mammalia) from the Jurassic of China. J Vert Paleont, 3(4):226-231
[7] Crompton A W, Jenkins F A Jr, 1968. Molar occlusion in Late Triassic mammals. Biol Rev, 43(4):427-458
[8] Gaetano L C, Rougier G W, 2011. New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny. J Vert Paleont, 31(4):829-843
[9] Gaetano L C, Rougier G W, 2012. First amphilestid from South America: a molariform from the Jurassic Ca?adón Asfalto Formation, Patagonia, Argentina. J Mammal Evol, 19(4):235-248
[10] Gaetano L C, Marsicano C A, Rougier G W, 2013. A revision of the putative Late Cretaceous triconodonts from South America. Cretaceous Res, 46:90-100
[11] Gao C L, Wilson G P, Luo Z X et al., 2009. A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse-angled molars and ‘amphilestid’ eutriconodonts. Proc R Soc B, doi: 10.1098/rspb.2009.1014
[12] Godefroit P, Guo D Y, 1999. A new amphilestid mammal from the Early Cretaceous of Inner Mongolia (P. R. China). Bull Inst R Sci Nat Belg, Sci Terre, 69(Suppl B):7-16
[13] Han G, Meng J, 2016. A new spalacolestine mammal from the Early Cretaceous Jehol Biota and implications for the morphology, phylogeny, and palaeobiology of Laurasian ‘symmetrodontans’ . Zool J Linn Soc, 178(2):343-380
[14] He H Y, Wang X L, Zhou Z H et al., 2004. Timing of the Jiufotang Formation (Jehol Group) in Liaoning, northeastern China, and its implications. Geophys Res Lett, 31:L12605, doi: 10.1029/2004GL019790
[15] He H Y, Wang X L, Zhou Z H et al., 2006. 40Ar/39Ar dating of Lujiatun Bed (Jehol Group) in Liaoning, northeastern China. Geophys Res Lett, 33:L04303, doi: 10.1029/2005GL025274
[16] Hou S L, Meng J, 2014. A new eutriconodont mammal from the Early Cretaceous Jehol Biota of Liaoning, China. Chinese Sci Bull, 59(5-6):546-553
[17] Hu Y M, Fox R C, Wang Y Q et al., 2005a. A new spalacotheriid symmetrodont from the Early Cretaceous of northeastern China. Am Mus Novit, 3475:1-20
[18] Hu Y M, Meng J, Wang Y Q et al., 2005b. Large Mesozoic mammals fed on young dinosaurs. Nature, 433:149-152
[19] Hu Y M, Wang Y Q, Fox R C et al., 2005c. Novel dental pattern in a Mesozoic mammal. Chinese Sci Bull, 50(7):713-715
[20] Jenkins F A Jr, Crompton A W, 1979 Triconodonta. In: Lillegraven J A, Kielan-Jaworowska Z, Clemens W A eds. Mesozoic Mammals: the First Two-Thirds of Mammalian History. Berkeley: University of California Press. 74-90
[21] Jenkins F A Jr, Schaff C R, 1988. The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J Vert Paleont, 8(1):1-24
[22] Ji Q, Luo Z X, Ji S A, 1999. A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature, 398:326-330
[23] Kermack K A, Mussett F, Rigney H W, 1973. The lower jaw of Morganucodon. Zool J Linn Soc, 53(2):87-175
[24] Kielan-Jaworowska Z, Dashzeveg D, 1998. Early Cretaceous amphilestid (‘triconodont’) mammals from Mongolia. Acta Palaeont Pol, 43(3):413-438
[25] Kielan-Jaworowska Z, Cifelli R L, Luo Z X, 2004. Mammals from the Age of Dinosaurs—Origins, Evolution and Structure. New York: Columbia University Press. 1-630
[26] Kurochkin E N, Zelenkov N V, Averianov A O et al., 2011. A new taxon of birds (Aves) from the Early Cretaceous of western Siberia, Russia. J Syst Palaeont, 9(1):109-117
[27] Kusuhashi N, Hu Y M, Wang Y Q et al., 2009a. New triconodontids (Mammalia) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China. Geobios, 42(6):765-781
[28] Kusuhashi N, Hu Y M, Wang Y Q et al., 2009b. Two eobaatarid (Multituberculata; Mammalia) genera from the Lower Cretaceous Shahai and Fuxin formations, northeastern China. J Vert Paleont, 29(4):1264-1288
[29] Kusuhashi N, Hu Y M, Wang Y Q et al., 2010. New multituberculate mammals from the Lower Cretaceous (Shahai and Fuxin formations), northeastern China. J Vert Paleont, 30(5):1501-1514
[30] Kusuhashi N, Wang Y Q, Li C K et al., 2016. Two new species of Gobiconodon (Mammalia, Eutriconodonta, Gobiconodontidae) from the Lower Cretaceous Shahai and Fuxin formations, northeastern China. Hist Biol, 28(1-2):14-26
[31] Li C K, Wang Y Q, Hu Y M et al., 2003. A new species of Gobiconodon (Triconodonta, Mammalia) and its implication for the age of Jehol Biota. Chinese Sci Bull, 48(11):1129-1134
[32] Li C K, Setoguchi T, Wang Y Q et al., 2005. The first record of “eupantotherian” (Theria, Mammalia) from the late Early Cretaceous of western Liaoning, China. Vert PalAsiat, 43(4):245-255
[33] Li G, Matsuoka A, 2015. Searching for a non-marine Jurassic/Cretaceous boundary in northeastern China. J Geol Soc Japan, 121(3):109-122
[34] Li J L, Wang Y, Wang Y Q et al., 2000. A new family of primitive mammal from the Mesozoic of western Liaoning, China. Chinese Sci Bull, 45(23):2545-2549
[35] Linnaeus C, 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Vol. 1: Regnum animale. Editio decima, reformata. Stockholm: Laurentii Salvii. 1-823
[36] Lopatin A V, 2013. New finds of Early Cretaceous mammals in Mongolia. Dokl Biol Sci, 449(1):103-105
[37] Lopatin A V, 2017. Early Cretaceous mammals from the Khamryn-Us and Shalan-Ikher localities in Mongolia. Dokl Biol Sci, 477(1):210-213
[38] Lopatin A V, Averianov A O, 2015. Gobiconodon (Mammalia) from the Early Cretaceous of Mongolia and revision of Gobiconodontidae. J Mammal Evol, 22(1):17-43
[39] Lopatin A V, Badamgarav D, 2013. Zuun-H?ov?r, ?v?rkhangai, Mongolia: a new locality of Early Cretaceous mammals. Dokl Earth Sci, 453(2):1178-1180
[40] Lopatin A V, Maschenko E N, Averianov A O, 2010. A new genus of triconodont mammal from the Early Cretaceous of western Siberia. Dokl Biol Sci, 433(1):282-285
[41] Luo Z X, Chen P J, Li G et al., 2007. A new eutriconodont mammal and evolutionary development in early mammals. Nature, 446:288-293
[42] Martin T, Marugán-Lobón J, Vullo R et al., 2015. A Cretaceous eutriconodont and integument evolution in early mammals. Nature, 526:380-384
[43] Maschenko E N, Lopatin A V, 1998. First record of an Early Cretaceous triconodont mammal in Siberia. Bull Inst R Sci Nat Belg, Sci Terre, 68:233-236
[44] Matsumoto A, Kusuhashi N, Murakami M et al., 2006. LA-ICPMS U-Pb zircon dating of tuff beds of the upper Mesozoic Tetori Group . Kyoto: Abstracts with Programs of the 155th Regular Meeting of the Palaeontological Society of Japan. 30
[45] Meng J, 2014. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl Sci Rev, 1(4):521-542
[46] Meng J, Hu Y M, Wang Y Q et al., 2003. The ossified Meckel’s cartilage and internal groove in Mesozoic mammaliaforms: implications to origin of the definitive mammalian middle ear. Zool J Linn Soc, 138(4):431-448
[47] Meng J, Hu Y M, Wang Y Q et al., 2005. A new triconodont (Mammalia) from the Early Cretaceous Yixian Formation of Liaoning, China. Vert PalAsiat, 43(1):1-10
[48] Meng J, Wang Y Q, Li C K, 2011. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature, 472:181-185
[49] Meng J, Wang Y Q, Li C K, 2015. Paleovertebrata Sinica, Vol. 3 Stem Synapsida and Mammalia, Fasc. 2 Primitive Mammals. Beijing: Science Press. 1-293
[50] Minjin B, Chuluun M, Geisler J H, 2003. A report of triconodont mammal jaw from Oosh, an Early Cretaceous locality in Mongolia. Publ Mongol Univ Sci Technol Inst Geol Ser Geol, 9:89-93
[51] Miyata K, Azuma Y, Shibata M, 2016. New mammalian specimens from the Lower Cretaceous Kitadani Formation, Tetori Group, Fukui, Japan. Hist Biol, 28(1-2):139-150
[52] Montellano M, Hopson J A, Clark J M, 2008. Late Early Jurassic mammaliaforms from Huizachal Canyon, Tamaulipas, México. J Vert Paleont, 28(4):1130-1143
[53] O’Connor J K, Averianov A O, Zelenkov N V, 2014. A confuciusornithiform (Aves, Pygostylia)-like tarsometatarsus from the Early Cretaceous of Siberia and a discussion of the evolution of avian hind limb musculature. J Vert Paleont, 34(3):647-656
[54] Pan Y H, Sha J G, Zhou Z H et al., 2013. The Jehol Biota: definition and distribution of exceptionally preserved relicts of a continental Early Cretaceous ecosystem. Cretaceous Res, 44:30-38
[55] Rougier G W, Novacek M J, McKenna M C et al., 2001. Gobiconodonts from the Early Cretaceous of Oshih (Ashile), Mongolia. Am Mus Novit, 3348:1-30
[56] Rougier G W, Garrido A, Gaetano L et al., 2007a. First Jurassic triconodont from South America. Am Mus Novit, 3580:1-17
[57] Rougier G W, Isaji S, Manabe M, 2007b. An Early Cretaceous mammal from the Kuwajima Formation (Tetori Group), Japan, and a reassessment of triconodont phylogeny. Ann Carnegie Mus, 76(2):73-115
[58] Sakai Y, Tsutsumi Y, Kusuhashi N et al., 2019. Zircon LA-ICP-MS U-Pb age of a tuff from the Akaiwa Formation of the Tetori Group in the Shiramine area, Ishikawa Prefecture, central Japan. J Geol Soc Japan, 125(3):255-260
[59] Sereno P C, 2010. Taxonomy, cranial morphology, and relationships of parrot-beaked dinosaurs (Ceratopsia: Psittacosaurus). In: Ryan M, Chinnery-Allgeier B J, Eberth D A eds. New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium. Bloomington: Indiana University Press. 21-58
[60] Shikama T, 1947. Teilhardosaurus and Endotherium, new Jurassic Reptilia and Mammalia from the Husin Coal-Field, south Manchuria. Proc Japan Acad, 23(7):76-84
[61] Sigogneau-Russell D, 2003. Discovery of triconodont mammals from the Early Cretaceous of North Africa: affinities of the amphilestids. Palaeovertebrata, 32(1):27-55
[62] Slaughter B H, 1969. Astroconodon, the Cretaceous triconodont. J Mammal, 50(1):102-107
[63] Sweetman S C, 2006. A gobiconodontid (Mammalia, Eutriconodonta) from the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern Britain. Palaeontology, 49(4):889-897
[64] Swisher CC III, Wang Y Q, Wang X L et al., 1999. Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature, 400:59-61
[65] Swisher CC III, Wang X L, Zhou Z H et al., 2002. Further support for a Cretaceous age for the feathered-dinosaur beds of Liaoning, China: new 40Ar/39Ar dating of the Yixian and Tuchengzi formations. Chinese Sci Bull, 47(2):136-139
[66] Tang F, Luo Z X, Zhou Z H et al., 2001. Biostratigraphy and palaeoenvironment of the dinosaur-bearing sediments in Lower Cretaceous of Mazongshan area, Gansu Province, China. Cretaceous Res, 22:115-129
[67] Trofimov B A, 1978. The first triconodonts (Mammalia, Triconodonta) from Mongolia. Dokl Acad Nauk SSSR, 243(1):213-216
[68] Wang W L, Zheng S L, Zhang L J, et al., 1989. Mesozoic stratigraphy and palaeontology of western Liaoning. China: Part I. Beijing: Geological Publishing House. 1-168
[69] Wang Y Q, Hu Y M, Meng J et al., 2001. An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science, 294:357-361
[70] Wang Y Q, Hu Y M, Zhou M Z, et al., 1995. Mesozoic mammal localities in western Liaoning, Northeast China. In: Sun A L, Wang Y Q eds. Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota. Beijing: China Ocean Press. 221-227
[71] Wang Y Q, Kusuhashi N, Jin X et al., 2018. Reappraisal of Endotherium niinomii Shikama, 1947, a eutherian mammal from the Lower Cretaceous Fuxin Formation, Fuxin-Jinzhou Basin, Liaoning, China. Vert PalAsiat, 56(3):180-192
[72] Yang X D, Li X Y, 1997. Stratigraphy (Lithostratic) of Liaoning Province: Multiple Classification and Correlation of the Stratigraphy of China 21. Wuhan: China University of Geoscience Press. 1-247
[73] Yuan C X, Xu L, Zhang X L et al., 2009. A new species of Gobiconodon (Mammalia) from western Liaoning, China and its implication for the dental formula of Gobiconodon. Acta Geol Sin, 83(2):207-211
文章导航

/