古生物CT装置的研制及应用
收稿日期: 2017-08-08
网络出版日期: 2019-01-20
基金资助
国家重大科学仪器设备开发专项(编号)资助(2011YQ03011206)
Development and applications of paleontological computed tomography
Received date: 2017-08-08
Online published: 2019-01-20
古生物化石研究传统的磨片法耗时,且具有破坏性,研究者不可能对珍贵的化石标本进行这样的操作,因此研究只能停留在化石的外表面。而古生物CT装置的出现使研究者可以对化石内部结构进行无损检测,得到上千层化石的图像数据。主要论述国内首套古生物CT装置的研制及典型应用,其中225-3D-μCT显微CT系统具有三维成像能力,最高分辨率达5 μm, 可以检测直径100 mm, 高度100 mm尺度的化石;450-TY-ICT通用型CT可对大尺寸化石高信噪比成像,检测范围是直径800 mm, 高度1000 mm, 分辨率达200 μm。这两台古生物CT以高成像性能满足了研究者对不同尺度化石的不同检测需求,成为中国古生物化石研究中非常重要的技术手段。
王燕芳, 魏存峰, 阙介民, 张文定, 孙翠丽, 舒岩峰, 侯叶茂, 张久昶, 史戎坚, 魏龙 . 古生物CT装置的研制及应用[J]. 古脊椎动物学报, 2019 , 57(1) : 84 -92 . DOI: 10.19615/j.cnki.1000-3118.170921
The traditional serial grinding method used to investigate the internal structure of fossils cannot be readily applied to valuable fossil specimens due to its destructive and time-consuming nature. Computed tomography (CT) is an ideal non-destructive technique for investigating the internal structure of fossils, in which thousands of serial images are obtained and used to produce an accurate reconstruction of the internal morphology. This paper reviews the design, development and applications of the first CT system in China dedicated exclusively to scanning fossils. The 225 kV three-dimensional (3D) fossil micro-CT (225-3D-μCT) is capable of high-resolution volumetric imaging, with a resolution up to 5 μm, and can accommodate specimens measuring up to 100 mm in diameter and 100 mm in length. The 450 kV ordinary fossil CT (450-TY-ICT) can produce high signal-to-noise ratio (SNR) images of specimens ranging up to 800 mm in diameter and 1000 mm in length, with a resolution up to 200 μm. Two paleontological CT facilities represent a high-performance platform offering the functional diversity needed to meet the demands of studying fossils at a variety of different scales. The two machines have become indispensable for paleontological research in China.
Key words: fossils; industrial computed tomography; paleontology
1 | Beall J L, Gordon I T, Gournay J P et al., 1996, Analysis of porosity in lower Ismay phylloid algal packstone using high-resolution computed X-ray tomography. Am Assoc Petrol Geol, Ann Meet Abstr, 5:13 |
2 | Clarke J A, Tambussi C P, Noriega J I et al., 2005. First definitive fossil evidence for part of the extant avian radiation in the Cretaceous. Nature, 433:305-308 |
3 | Kearney M, Maisano J A, Rowe T , 2005. Cranial anatomy of the extinct amphisbaenian Rhineura hatcherii (Squamata, Amphisbaenia) based on high-resolution X-ray computed tomography. Morphology, 264:1-33 |
4 | Keyes W , 1962. A new instrument for the serial grinding of invertebrate fossils. New Zeal J Geol Geophys, 5(1):46-54 |
5 | Kyle J R, Ketcham R A, Mote A S , 2004. Contributions of high resolution X-ray computed tomography to ore studies. In: Muhling J et al. eds. Extended Abstracts, Predictive Mineral Discovery Under Cover. Perth: University of Western Australia. 387-390 |
6 | Liu W, Schepartz L A, Xing S , 2013. Late Middle Pleistocene hominin teeth from Panxian Dadong, South China. J Hum Evol, 64(5):337-355 |
7 | Lu J, Zhu M, Long J A et al., 2012. The earliest known stem-tetrapod from the Lower Devonian of China. Nat Commun, 3:1160 |
8 | Mark D S , 2008. Tomographic techniques for the study of exceptionally preserved fossils. Proc Biol Sci, 275:1587-1593 |
9 | Mickler P J, Ketcham R A, Colbert M W et al., 2004. Application of high-resolution X-ray computed tomography in determining the suitability of speleothem for use in paleoclimatic, paleohydrologic reconstructions. J Cave Karst Stud, 66(1):3-8 |
10 | Shen G J, Wang W, Wang Q et al., 2002. U-Series dating of Liujiang hominid site in Guangxi, southern China. J Hum Evol, 43:817-829 |
11 | Wang Y F, Que J M, Cao D Q et al., 2013. Measurement of the spatial resolution and the relative density resolution in an industrial cone-beam micro computed tomography system. Chinese Phys C, 37(7):93-100 |
12 | Wu X J, Liu W, Dong W et al., 2008. The brain morphology of Homo Liujiang cranium fossil by three-dimensional computed tomography. Chinese Sci Bull, 53(13):1570-1575 |
13 | Wu X J, Schepartz L A, Liu W et al., 2011. Antemortem trauma and survival in the late Middle Pleistocene human cranium from Maba, South China. Proc Natl Acad Sci USA, 108:19558-19562 |
14 | Wu X J, Maddux S D, Pan L et al., 2012. Nasal floor variation among eastern Eurasian Pleistocene Homo. Anthropol Sci, 12(3):217-226 |
15 | Wu X J, Xing S, Trinkaus E , 2013. An enlarged parietal foramen in the late archaic Xujiayao 11 neurocranium from northern China, and rare anomalies among Pleistocene Homo. PLoS ONE, 8(3):59587-59617 |
16 | Wu X J, Crevecoeur I, Liu W et al., 2014. Temporal labyrinths of eastern Eurasian Pleistocene humans. Proc Natl Acad Sci USA, 111:10509-10513 |
17 | Xing S, Martinón-Torres M, Castro J M B et al., 2014. Middle Pleistocene hominin teeth from Longtan Cave, Hexian, China. PLoS ONE, 9(12):114265-114303 |
18 | Xing S, Martinón-Torres M, Castro J M B et al., 2015. Hominin teeth from the early Late Pleistocene Site of Xujiayao, northern China. Am J Phys Anthropol, 156(2):224-240 |
19 | Yuan S X, Chen T M, Gao S J , 1986. Uranium series chronological sequence of some Paleolithic sites in South China. Acta Anthropol Sin, 5:179-190 |
20 | Zhang L Z, Zhao L X , 2013. Enamel thickness of Gigantopithecus blacki and its significance for dietary adaptation and phylogeny. Acta Anthropol Sin, 32:365-376 |
21 | Zhao W, Fu G T, Sun C L et al., 2011. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution. Chinese Phys C, 35(10):978-985 |
22 | Zhu M, Yu X B, Lu J et al., 2012. Earliest known coelacanth skull extends the range of anatomically modern coelacanths to the Early Devonian. Nat Commun, 3:772 |
23 | Zhu M, Yu X B, Ahlberg P E et al., 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature, 502:188-193 |
/
〈 | 〉 |