欢迎访问《古脊椎动物学报》官方网站,今天是

侏罗纪燕辽生物群贼兽类牙齿发育双出齿和异时发育的证据

展开
  • 1 中国科学院古脊椎动物与古人类研究所,中国科学院脊椎动物演化与人类起源重点实验室 北京 100044
    2 中国科学院生物演化与环境卓越创新中心 北京 100044
    3 临沂大学地质与古生物研究所 山东临沂 276005
    4 山东天宇自然博物馆 山东平邑 273300
    5 美国印第安纳宾夕法尼亚大学生物系 印第安纳 15705
    6 美国自然历史博物馆古生物部 纽约 10024

收稿日期: 2018-03-30

  网络出版日期: 2019-01-20

基金资助

国家自然科学基金(批准号)(41688103);国家自然科学基金(批准号)(41404022);中国科学院战略性先导科技专项(B类) (编号)资助(XDB26000000);中国科学院战略性先导科技专项(B类) (编号)资助(XDB18000000)

Evidence of diphyodonty and heterochrony for dental development in euharamiyidan mammals from Jurassic Yanliao Biota

Expand
  • 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China
    2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044, China
    3 Institute of Geology and Paleontology, Linyi University Linyi, Shandong 276005, China
    4 Shandong Tianyu Museum of Nature Pingyi, Shandong 273300, China
    5 Department of Biology, Indiana University of Pennsylvania Indiana 15705, USA
    6 Division of Paleontology, American Museum of Natural History New York 10024, USA

Received date: 2018-03-30

  Online published: 2019-01-20

摘要

贼兽是一已绝灭的哺乳动物型类,它们与多瘤齿兽和相关类群的系统关系尚存争议,很大的原因在于这类动物的牙齿和头骨形态的特征呈哺乳动物冠群和似哺乳动物之间的镶嵌状态。通过显微CT和平板CL技术,对辽宁省侏罗纪燕辽生物群4种真贼兽的8件标本的牙齿形态、磨损状况和牙齿替换信息进行观察和描述,并与贼兽已发表属种牙齿替换进行对比,对二出齿这一被认为可能与哺乳和亲代养育行为演化有关的重要特征在贼兽中的存在与否进行了讨论。结果显示,所有贼兽的颊齿数恒定,在任何萌出的臼齿下均无齿胚保存,且无替换证据,可以确定为单出齿。前臼齿具一次替换,为典型的哺乳动物二出齿。所有真贼兽只有一对下门齿,一对上门齿,仅玲珑仙兽例外,其在增大的I2内侧,有一残留的I1。神兽和仙兽上下颌骨中,都不具有门齿牙胚,而树贼兽和翔齿兽的上下颌骨中,都具有替换牙胚。其中上门齿齿胚具2-3个齿尖,位于萌出的乳门齿背后方;下门齿齿胚根部始于m2下方,齿尖向前延伸至乳门齿的后背方;牙胚随着不同个体发育阶段向前推进的位置不同,较成熟的个体,齿根有逐渐愈合的现象。门齿的替换应晚于最后臼齿的完全萌出,显示了明显的滞后性,相比其他贼兽的门齿替换应为异时发育。牙胚的形态、相对颊齿大小和后端位置与神兽和仙兽已萌出的门齿更为相近,而较树贼兽和翔齿兽已萌出的门齿显得更大且更复杂,因此神兽和仙兽的门齿更可能为恒齿,贼兽类的门齿则更可能为二出齿。树贼兽和翔齿兽极度膨大的前臼齿很可能加长和推迟门齿的替换过程,甚至影响了替换的发生,同时也在一定程度上抑制了最后臼齿的萌出和功能作用。树贼兽和翔齿兽的这些特征显示它们可能具有某种特殊的食性,更倾向于强调前臼齿对食物的摄取和咀嚼处理。而贼兽具有的典型的哺乳动物二出齿特征、稳定的齿式和高度分化的牙齿等,增加了其为哺乳动物的可能性。

本文引用格式

毛方园, 郑晓廷, 王孝理, 王元青, 毕顺东, 孟津 . 侏罗纪燕辽生物群贼兽类牙齿发育双出齿和异时发育的证据[J]. 古脊椎动物学报, 2019 , 57(1) : 51 -76 . DOI: 10.19615/j.cnki.1000-3118.180803

Abstract

Evidences for tooth replacement of known euharamiyidans are reported based on eight specimens of four species from the Jurassic Yanliao Biota, Liaoning Province, China. Tooth morphologies, eruptional and wear condition, and tooth germs are directly observed and/or revealed by Micro CT or slab CL scan. The euharamiyidan dentition has definite number of cheek teeth and monophyodont molars that are related to precise occlusion. Incisor germs are found in three specimens of Arboroharamiya but not in Shenshou lui and Xianshou linglong. The incisor germs in the upper jaw, presumably I2, have a large crown with two or three cusps; those in the lower jaw, interpreted as the permanent i2, are positioned dorsal to the root of the erupted incisor, interpreted as di2. Comparing dental development within various ontogenetic stages, the incisor tooth germs in Arboroharamiya and Vilevolodon would replace the deciduous incisors in a much later time than when ultimate molars became fully erupted and functional, if it did happen. The available evidence indicates presence of diphyodonty in the loci of the ultimate lower premolar and incisor, which are common mammalian features potentially related to lactation and parental care. The prolonged or delayed eruptions of incisors and ultimate molars in Arboroharamiya and Vilevolodon are probably associated with the specialization of dentition, with emphasis on the P4/p4 chewing function, which should be an autapomorphy and represent a heterochronic shift of tooth replacement in terms of ontogenetic timing comparing to other “haramiyidians”. The heterochronic incisor replacement is probably owing to developmental suppression related to expansion of the premolars, and may have evolved independently multiple times within mammaliaforms.

参考文献

1 Abdala F, Jasinoski S C, Fernandez V , 2013. Ontogeny of the Early Triassic cynodont Thrinaxodon liorhinus (Therapsida): dental morphology and replacement. J Vert Paleont, 33(6):1408-1431
2 Anders U, von Koenigswald W, Ruf I et al., 2011. Generalized individual dental age stages for fossil and extant placental mammals. Pal?ontol Z, 85(3):321-339
3 Archibald J D , 1982. A study of mammalia and geology across the Cretaceous-Tertiary boundary in Garfield County, Montana. Univ Calif Publ Geol Sci, 122:1-286
4 Averianov A O, Lopatin A V, Krasnolutskii S A , 2011. The first haramiyid (Mammalia, Allotheria) from the Jurassic of Russia. Dokl Biol Sci, 437(1):103-106
5 Bi S D, Wang Y Q, Guan J et al., 2014. Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature, 514:579-584
6 Brink A A , 1956. Speculations on some advanced mammalian characteristics in higher mammal-like reptiles. Palaeontol Afr, 4:77-95
7 Butler P M , 2000. Review of the early allotherian mammals. Acta Palaeontol Pol, 45(4):317-342
8 Butler P M, Hooker J J , 2005. New teeth of allotherian mammals from the English Bathonian, including the earliest multituberculates. Acta Palaeontol Pol, 50(2):185-207
9 Butler P M, MacIntyre G T , 1994. Review of the British Haramiyidae (? Mammalia, Allotheria), their molar occlusion and relationships. Philos Ttans R Soc London, Ser B, 345:433-458
10 Cifelli R L , 1994. Therian mammals of the Terlingua Local Fauna (Judithian), Aguja Formation, Big Bend of the Rio Grande, Texas. Contrib Geol Univ Wyo, 30(2):117-136
11 Cifelli R L , 1999. Therian teeth of unusual design from the medial Cretaceous (Albian-Cenomanian) Cedar Mountain Formation, Utah. J Mamm Evol, 6(3):247-270
12 Cifelli R L, de Muizon C , 1998. Dentition and jaw of Kokopellia juddi, a primitive marsupial or near marsupial from the medial Cretaceous of Utah. J Mamm Evol, 4(4):241-258
13 Clark J M, Hopson J A , 1985. Distinctive mammal-like reptile from Mexico and its bearing on the phylogeny of the Tritylodontidae. Nature, 315:398-400
14 Clemens W A , 1966. Fossil mammals from the type Lance Formation Wyoming. Part II. Marsupialia. Univ Calif Publ Geol Sci, 62:1-122
15 Clemens W A , 1980. Rhaeto-Liassic mammals from Switzerland and West Germany. Zitteliana, 5:51-92
16 Clemens W A , 2007. Early Jurassic allotherians from South Wales (United Kingdom). Foss Rec, 10(1):50-59
17 Clemens W A, Martin T , 2014. Review of the non-tritylodontid synapsids from bone beds in the Rhaetic Sandstone, southern Germany. Pal?ontol Z, 88(4):461-479
18 Crompton A W , 1963. Tooth replacement in the cynodont Thrinaxodon liorhinus Seeley. Ann S Afr Mus, 46:479-521
19 Crompton A W , 1972. Postcanine occlusion in cynodonts and tritylodonts. Bull Br Mus (Nat Hist) Geol, 21:30-71
20 Crompton A W , 1995. Masticatory function in nonmammalian cynodonts and early mammals. In: Thomason J J ed. Functional Morphology in Vertebrate Paleontology. Cambridge: Cambridge University Press. 55-75
21 Crompton A W, Hylander W L , 1986. Changes in mandibular function following the acquisition of a dentary-squamosal joint. In: Hotton N, MacLean P D III, Roth J J et al. eds. The Ecology and Biology of Mammal-like Reptiles. Washington D C: Smithsonian Institution Press. 263-282
22 Crompton A W, Luo Z X , 1993. Relationships of the Liassic mammals Sinoconodon, Morganucodon, and Dinnetherium. In: Szalay F S, Novacek M J, McKenna M C eds. Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. New York: Springer-Verlag. 30-44
23 Cui G H, Sun A L , 1987. Postcanine root system of tritylodonts. Vert PalAsiat, 25(4):245-259
24 Edmund A G , 1960. Tooth replacement phenomena in the lower vertebrates. R Ontario Mus Life Sci Contrib, 52:1-190
25 Ensom P C, Sigogneau-Russell D , 2000. New symmetrodonts (Mammalia, Theria) from the Purbeck Limestone Group, Early Cretaceous of southern England. Cretaceous Res, 21(6):767-779
26 Fourie S , 1963. Tooth replacement in the gomphodont cynodont Diademodon. S Afr J Sci, 59:211-213
27 Fox R C , 1981. Mammals from the Upper Cretaceous Oldman Formation, Alberta. V. Eodelphis Matthew, and the evolution of the Stagodontidae (Marsupialia). Can J Earth Sci, 18(2):350-365
28 Gill P , 2004. A new symmetrodont from the Early Cretaceous of England. J Vert Paleont, 24(3):748-752
29 Gow C E , 1980. The dentitions of the Trithelodontidae (Therapsida: Cynodontia). Proc R Soc Lond B Biol, 208:461-481
30 Gow C E , 1985. Apomorphies of the Mammalia. S Afr J Sci, 81:558-560
31 Greenwald N S , 1988. Patterns of tooth eruption and replacement in multituberculate mammals. J Vert Paleont, 8(3):265-277
32 Hahn G , 1973. Neue Z?hne von Haramiyiden aus der deutschen Ober-Trias und ihre Beziehungen zu den Multituberculaten. Palaeontogr Abt A, 142:1-15
33 Hahn G, Hahn R , 2006. Evolutionary tendencies and systematic arrangement in the Haramiyida (Mammalia). Geol Palaeontol, 40:173-193
34 Hahn G, Sigogneau-Russell D, Wouters G , 1989. New data on Theroteinidae-their relations with Paulchoffatiidae and Haramiyidae. Geol Paleontol, 23:205-215
35 Han G, Meng J , 2016. A new spalacolestine mammal from the Early Cretaceous Jehol Biota and implications for the morphology, phylogeny, and palaeobiology of Laurasian ‘symmetrodontans’. Zool J Linn Soc, 178(2):343-380
36 Han G, Mao F Y, Bi S D et al., 2017. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones. Nature, 551:451-456
37 Heinrich W D , 1999. First haramiyid (Mammalia, Allotheria) from the Mesozoic of Gondwana. Foss Rec, 2(1):159-170
38 Heinrich W D , 2001. New records of Staffia aenigmatica (Mammalia, Allotheria, Haramiyida) from the Upper Jurassic of Tendaguru in southeastern Tanzania, East Africa. Foss Rec, 4(1):239-255
39 Hennig E , 1922. Die S?ugerz?hne des wu?ttembergischen Rh?t-Lias-Bonebeds. Neues Jahrb Geol Pal?eontol, Abh, 46:181-267
40 Hopson J A , 1965. Tritylodontid therapsids from Yunnan and the cranial morphology of Bienotherium. Ph. D theis. Chicago: University of Chicago. 1-295
41 Hopson J A , 1971. Postcanine replacement in the gomphodont cynodonts Diademodon. In: Kermack D M, Kermack K A eds. Early Mammals. London: Academic Press. 1-21
42 Hopson J A , 1973. Endothermy, small size, and the origin of mammalian reproduction. Am Nat, 107:446-452
43 Hopson J A, Crompton A W , 1969. Origin of mammals. In: Dobzhansky T, Hecht M K, Steere W C eds. Evolutionary Biology, Vol. 3. New York: Appleton-Century- Crofts. 15-72
44 Huttenlocker A K, Grossnickle D M, Kirkland J I et al., 2018. Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature, 558:108-112
45 Jenkins F A Jr , 1990. Monotremes and the biology of Mesozoic mammals. Neth J Zool, 40:5-31
46 Jenkins F A Jr, Schaff C R , 1988. The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. J Vert Paleont, 8(1):1-24
47 Jenkins F A, Crompton A, Downs W R , 1983. Mesozoic mammals from Arizona: new evidence on mammalian evolution. Science, 222:1233-1235
48 Jenkins F A, Gatesy S M, Shubin N H et al., 1997. Haramiyids and Triassic Mammalian Evolution. Nature, 385:715-718
49 Ji Q, Luo Z X, Zhang X L et al., 2009. Evolutionary development of the middle ear in Mesozoic therian mammals. Science, 326:278-281
50 Kermack D M, Kermack K A , 1984. The Evolution of Mammalian Characters. London: Croom Helm. 1-149
51 Kermack K A, Mussett F, Rigney H W , 1973. The lower jaw of Morganucodon. Zool J Linn Soc, 53(2):87-175
52 Kermack K A, Mussett F, Rigney H W , 1981. The skull of Morganucodon. Zool J Linn Soc, 71(1):1-158
53 Kielan-Jaworowska Z, Dashzeveg D , 1998. Early Cretaceous amphilestid (“triconodont”) mammals from Mongolia. Acta Palaeontol Pol, 43(3):413-438
54 Kielan-Jaworowska Z, Cifelli R L, Luo Z X , 2004. Mammals from the Age of Dinosaurs: Structure, Relationships, and Paleobiology. New York: Columbia Univeristy Press. 1-630
55 Krause D W, Hoffmann S, Wible J R et al., 2014. First cranial remains of a gondwanatherian mammal reveal remarkable mosaicism. Nature, 515:512-517
56 Ku?hne W G , 1956. The Liassic therapsid Oligokyphus. London: British Museum (Natural History). 1-149
57 Lillegraven J A , 1969. Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial-placental dichotomy in mammalian evolution. Univ Kansas Paleontol Contrib, 50:1-122
58 Liu J, Sues Hans-Dieter , 2010. Dentition and tooth replacement of Boreogomphodon (Cynodontia: Traversodontidae) from the Upper Triassic of North Carolina, USA. Vert PalAsiat, 48(3):169-184
59 Lopatin, A, Averianov A , 2015. Gobiconodon (Mammalia) from the Early Cretaceous of Mongolia and revision of Gobiconodontidae. J Mamm Evol, 22(1):17-43
60 Luckett W P , 1985. Superordinal and intraordinal affinities of rodents: developmental evidence from the dentition and placentation. In: Luckett W P, Hartenberger J L eds. Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis. New York: Plenum Press. 227-276
61 Luckett W P , 1993. An ontogenetic assessment of dental homologies in therian mammals. In: Szalay F S, Novacek M J, McKenna M C eds. Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. New York: Springer-Verlag. 182-204
62 Luo Z X , 1994. Sister-group relationships of mammals and transformations of diagnostic mammalian characters. In: Fraser N C, Sues H D eds. In the Shadow of the Dinosaurs-Early Mesozoic Tetrapods. Cambridge: Cambridge University Press. 98-128
63 Luo Z X , 2007. Transformation and diversification in the early mammalian evolution. Nature, 450:1011-1019
64 Luo Z X, Wible J R , 2005. A Late Jurassic digging mammal and early mammalian diversification. Science, 308:103-107
65 Luo Z X, Wu X C , 1994. The small vertebrate fauna of the lower Lufeng Formation, Yunnan. In: Fraser N C, Sues H D eds. In the Shadow of the Dinosaurs-Early Mesozoic Tetrapods. Cambridge: Cambridge University Press. 251-270
66 Luo Z X, Wu X C , 1995. Correlation of vertebrate assemblage of the lower Lufeng Formation, Yunnan, China. In: Sun A L, Wang Y Q eds. Sixth Symposium on Mesozoic Terrestrial Ecosystem and Biotas, Short Papers. Beijing: China Ocean Press. 83-88
67 Luo Z X, Kielan-Jaworowska Z, Cifelli R L , 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol, 47(1):1-78
68 Luo Z X, Kielan-Jaworowska Z, Cifelli R L , 2004. Evolution of dental replacement in mammals. Bull Carnegie Mus Nat Hist, 36:159-175
69 Luo Z X, Chen P J, Li G et al., 2007a. A new eutriconodont mammal and evolutionary development in early mammals. Nature, 446:288-293
70 Luo Z X, Ji Q, Yuan C X , 2007b. Convergent dental adaptations in pseudotribosphenic and tribosphenic mammals. Nature, 450:93-97
71 Luo Z X, Yuan C X, Meng Q J et al., 2011. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature, 476:442-445
72 Luo Z X, Meng Q J, Ji Q et al., 2015a. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science, 347:760-763
73 Luo Z X, Gatesy S M, Jenkins F A et al., 2015b. Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc Natl Acad Sci USA, 112:E7101-E7109
74 Luo Z X, Meng Q J, Grossnickle D M et al., 2017. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature, 548:326-329
75 Maisch M W, Matzke A T, Grossmann F et al., 2005. The first haramiyoid mammal from Asia. Naturwissenschaften, 92(1):40-44
76 Mao F Y, Li C K, Wang Y Q et al., 2016. The incisor enamel microstructure of Mina hui (Mammalia, Glires) and its implication for the taxonomy of basal Glires. Vert PalAsiat, 54(2):137-155
77 Mao F Y, Wang Y Q, Bi S D et al., 2017. Tooth enamel microstructures of three Jurassic euharamiyidans and implications for tooth enamel evolution in allotherian mammals. J Vert Paleont, 37(2), doi: 10.1080/02724634.2017.1279168
78 Martin T, Averianov A O, Pfretzschner H U , 2010a. Mammals from the Late Jurassic Qiqu Formation in the southern Junggar Basin, Xinjiang, Northwest China. Palaeobio Palaeoenv, 90(3):295-319
79 Martin T, Nowotney M, Fischer M , 2010b. New data on tooth replacement in the Late Jurassic docodont mammal Haldanodon exspectatus. J Vert Paleont, 30(Supp):130A
80 Martin T, Marugán-Lobón J, Vullo R et al., 2015. A Cretaceous eutriconodont and integument evolution in early mammals. Nature, 526:380-384
81 Meng J , 2014. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl Sci Rev, 1(4):521-542
82 Meng J, Hu Y M, Wang Y Q et al., 2003. Dentocranial morphologies of the Early Cretaceous triconodont mammal Repenomamus: new evidence for mammalian evolution. J Vert Paleont, 23(Supp):78A
83 Meng J, Wang Y Q, Li C K , 2011. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodontan. Nature, 472:181-185
84 Meng J, Bi S D, Wang Y Q et al., 2014. Dental and mandibular morphologies of Arboroharamiya (Haramiyida, Mammalia): a comparison with other haramiyidans and Megaconus and implications for mammalian evolution. PloS One, 9:e113847
85 Meng J, Bi S D, Zheng X T et al., 2018. Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear. J Morphol, 279:441-457
86 Meng Q J, Ji Q, Zhang Y G et al., 2015. An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science, 347:764-768
87 Meng Q J, Grossnickle D M, Liu D et al., 2017. New gliding mammaliaforms from the Jurassic. Nature, 548:291-296
88 Miao D S , 1986. Dental anatomy and ontogeny of Lambdopsalis bulla (Mammalia, Multituberculata). Contrib Geol Univ Wyo, 24:65-76
89 Mills J R E , 1971. The dentition of Morganucodon. In: Kermack D M, Kermack K A eds. Early Mammals. Zool J Linn Soc, 50(S1):29-63
90 Nowotny M, Martin T, Fischer M S , 2001. Dental anatomy and tooth replacement of Haldanodon exspectatus (Docodonta, Mammalia) from the Upper Jura of Portugal. J Morphol, 248(S3):268
91 O’Meara R N, Asher R J , 2016. The evolution of growth patterns in mammalian versus nonmammalian cynodonts. Paleobiology, 42(3):439-464
92 Osborn J W , 1974a. On the tooth succession in Diademodon. Evolution, 28:141-157
93 Osborn J W , 1974b. On the control of tooth replacement in reptiles and its relationship to growth. J Theor Biol, 46:509-527
94 Osborn J W, Crompton A W , 1973. The evolution of mammalian from reptilian dentitions. Brev Mus Comp Zool, 399:1-18
95 Owen R , 1871. Monograph of the Fossil Mammalia of the Mesozoic Formations. London: Palaeontographical Society. 1-140
96 Panciroli E, Benson R B J, Walsh S , 2017. The dentary of Wareolestes rex (Megazostrodontidae): a new specimen from Scotland and implications for morganucodontan tooth replacement. Palaeontology, 3(3):373-386
97 Parrington F R , 1936. On the tooth replacement in theriodont reptiles. Philos Trans R Soc London, Ser B, 226:121-142
98 Parrington F R , 1947. On the collection of Rhaetic mammalian teeth. Proc Zool Soc London, 116:707-728
99 Parrington F R , 1971. On the Upper Triassic mammals. Philos Trans R Soc London, Ser B, 261:231-272
100 Parrington F R , 1973. The dentitions of the earliest mammals. Zool J Linn Soc, 52(1):85-95
101 Parrington F R , 1978. A further account of the Triassic mammals. Philos Trans R Soc London, Ser B, 282:177-204
102 Peyer B , 1956. über Z?hne von Haramiyiden, von Triconodontiden und von wahrscheinlich synapsiden Reptilien aus dem Rh?t von Hallau. Schweiz Pal?ontol Abh, 72:1-72
103 Pond C M , 1977. The significance of lactation in the evolution of mammals. Evolution, 31(1):177-199
104 Rodrigues H G, Marangoni P, ?umbera R et al., 2011. Continuous dental replacement in a hyper-chisel tooth digging rodent. Proc Natl Acad Sci USA, 108:17355-17359
105 Ross C F, Eckhardt A, Herrel A et al., 2007. Modulation of intra-oral processing in mammals and lepidosaurs. Integr Comp Biol, 47(1):118-136
106 Rougier G W, Sheth A S, Carpenter K et al., 2014. A new species of Docodon (Mammaliaformes: Docodonta) from the Upper Jurassic Morrison Formation and a reassessment of selected craniodental characters in basal mammaliaforms. J Mamm Evol, 22(1):1-16
107 Rowe T , 1993. Phylogenetic systematics and the early history of mammals. In: Szalay F S, Novacek M J, McKenna M C eds. Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. New York: Springer-Verlag. 129-145
108 Rowe T, Rich T H, Vickers-Rich P et al., 2008. The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci USA, 105:1238-1242
109 Sigogneau-Russell D , 1989. Haramiyidae (Mammalia, Allotheria) en provenance du Trias supérieur de Lorraine (France). Palaeontogr Abt A, 206:137-198
110 Sigogneau-Russell D , 1991. First evidence of Multituberculata (Mammalia) in the Mesozoic of Africa. Neues Jahrb Geol Pal?ontol Abh, 1991: 119-125
111 Sigogneau-Russell D, Frank P, Hemmerlé J , 1986. A new family of mammals from the lower part of the French Rhaetic. In: Padian K ed. The Beginning of the Age of Dinosaurs Faunal Change Across the Triassic-Jurassic Boundary. Cambridge: Cambridge University Press. 99-108
112 Simpson G G , 1928. A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. London: Trustees of the British Museum. 1-215
113 Sweetman S C , 2008. A spalacolestine spalacotheriid (Mammalia, Trechnotheria) from the Early Cretaceous (Barremian) of southern England and its bearing on spalacotheriid evolution. Palaeontology, 51:1367-1385
114 Tyndale-Biscoe H, Renfree M , 1987. Reproductive Physiology of Marsupials. Cambridge: Cambridge University Press. 1-413
115 Wang Y Q, Hu Y M, Meng J et al., 2001. An ossified Meckel’s cartilage in two Cretaceous mammals and origin of the mammalian middle ear. Science, 294:357-361
116 Winge H , 1941. The Interrelationships of the Mammalian Genera, Vol. 1: Monotremata, Marsupialia, Insectivora, Chiroptera, Edentata. Kobenhavn: C. A. Reitzels-Forlag. 1-418
117 Zeller U , 1999. Mammalian reproduction: origin and evolutionary transformations. Zool Anz, 238(1):117-130
118 Zhang F K, Crompton A W, Luo Z X et al., 1998. Pattern of dental replacement of Sinoconodon and its implications for evolution of mammals. Vert PalAsiat, 36(3):197-217
119 Zheng X T, Bi S D, Wang X L et al., 2013. A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature, 500:199-202
120 Zhou C F, Wu S Y, Martin T et al., 2013. A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations. Nature, 500:163-167
121 Ziegler A C , 1971. A theory of the evolution of therian dental formulas and replacement pattern. Q Rev Biol, 46(3):226-249
文章导航

/