节甲鱼类(有颌脊椎动物干群)系统发育多样性的衰落与泥盆纪重大环境-生物事件耦合
收稿日期: 2023-08-29
网络出版日期: 2023-11-24
基金资助
国家自然科学基金(42272028);国家自然科学基金(42130209);中国科学院率先行动“百人计划” B类青年项目(E0CQ010103)
Decline in phylogenetic diversity of Arthrodira (stem-group Gnathostomata) correlates with major Devonian bioevents
Received date: 2023-08-29
Online published: 2023-11-24
节甲鱼类是盾皮鱼类(具颌的有颌类干群)中多样性最高的类群,以占据较高营养级而著称,特别是在它们演化历史的后期。尽管节甲鱼类的化石记录相对完整,但以往对节甲鱼类多样性的研究主要基于统计每个地质历史阶段的分类单元数量(原始多样性), 其结果与泥盆纪重大环境-生物事件耦合程度较差。本文建立了一个新的包括219个属、450个种的详尽的节甲鱼类数据集,并根据之前许多系统发育研究结果,将其中大部分属种整合置入一个人工超树中,以进行系统发育多样性分析。分析结果表明,考虑幽灵支系的存在之后,节甲鱼类系统发育多样性的变化曲线与原始多样性曲线截然不同。节甲鱼类系统发育多样性呈现出典型的早期爆发的模式,在早泥盆世(洛赫考夫期-布拉格期界线)达到峰值,随后伴随一系列事件发生下降。在前4个事件的附近,节甲鱼类的系统发育多样性都只经历微弱的下降,总体维持在较高的水平;而在后3个事件,特别是弗拉期-法门期界线和泥盆纪-石炭纪界线两大事件发生时间附近发生急剧下降,并且直到该类群在泥盆纪末完全灭绝之前,都未出现恢复迹象。而节甲鱼类的原始多样性除了在弗拉期-法门期事件的时间出现下降,在所有其他事件中下降都不明显。
薛钦元 , 余逸伦 , 潘照晖 , 朱幼安 , 朱敏 . 节甲鱼类(有颌脊椎动物干群)系统发育多样性的衰落与泥盆纪重大环境-生物事件耦合[J]. 古脊椎动物学报, 2024 , 62(1) : 1 -12 . DOI: 10.19615/j.cnki.2096-9899.231124
Arthrodira, the most diverse subgroup of placoderms, or jawed stem gnathostomes, is noted for their occupation of high trophic levels, especially in the later stage of their evolutionary history. Despite the relatively complete fossil record of arthrodires, the results of previous studies on the arthrodire diversity, based on counting the numbers of taxa in each time interval (raw or taxic diversity), correlate poorly with major Devonian bioevents. Here, we assemble a new, exhaustive dataset of arthrodires, comprising 450 species of 219 genera. Most taxa are integrated into a supertree integrating the results from various phylogenetic investigations. Our analysis of the phylogenetic diversity, accounting for the presence of ghost lineages, reveals a very different pattern compared to the raw diversity. The phylogenetic diversity of arthrodires exhibited a typical early burst pattern, peaking in the Early Devonian (Lochkovian-Pragian Boundary), and followed by declines that aligned well with several major bioevents. Near each of the first four events, the arthrodire diversity experienced only minor drops and generally persisted at high levels. The later three events, particularly the Frasnian-Famennian Boundary and Devonian-Carboniferous Boundary Events, led to steep declines in arthrodire diversity, from which they never recovered before their complete extinction in the end-Devonian. All these declines were not evident in the raw or taxic diversity pattern, except that related to the Frasnian-Famennian Boundary Event.
Key words: Devonian; Placoderm; Arthrodira; taxic diversity; phylogenetic diversity; bioevents
[1] | Anderson P S L, Westneat M W, 2007. Feeding mechanics and bite force modelling of the skull of Dunkleosteus terrelli, an ancient apex predator. Biol Lett, 3: 77-80 |
[2] | Boyle J, Ryan M J, 2017. New information on Titanichthys (Placodermi, Arthrodira) from the Cleveland Shale (Upper Devonian) of Ohio, USA. J Paleontol, 91: 318-336 |
[3] | Brazeau M D, Giles S, Dearden R P et al., 2020. Endochondral bone in an Early Devonian ‘placoderm’ from Mongolia. Nat Ecol Evol, 4: 1477-1484 |
[4] | Brotzen F, 1935. Die silurischen und devonischen Fischvorkommen in Westpodolien II. Palaeobiologica, 6: 111-131 |
[5] | Buggisch W, 1991. The global Frasnian-Famennian ‘Kellwasser Event’. Geol Rundsch, 80: 49-72 |
[6] | Burrow C J, 2006. Placoderm fauna from the Connemarra Formation (?late Lochkovian, Early Devonian), central New South Wales, Australia. Alcheringa, 30: 59-88 |
[7] | Carmichael S K, Waters J A, Suttner T J et al., 2014. A new model for the Kellwasser Anoxia Events (Late Devonian): shallow water anoxia in an open oceanic setting in the Central Asian Orogenic Belt. Palaeogeogr Palaeoclimatol Palaeoecol, 399: 394-403 |
[8] | Carr R K, 1995. Placoderm diversity and evolution. Bull Mus Natl Hist Nat Sect, 17: 85-125 |
[9] | Carr R K, 1996. Stenosteus angustopectus sp. nov. from the Cleveland shale (Famennian) of northern Ohio with a review of selenosteid (Placodermi) systematics. Kirtlandia, 49: 19-43 |
[10] | Cloutier R, Lelièvre H, 1998. Comparative Study of the Fossiliferous Sites of the Devonian. Québec: Ministère de l'Environnement et de la Faune. 1-86 |
[11] | Cohen K M, Finney S C, Gibbard P L et al., 2013 updated. updated. The ICS International Chronostratigraphic Chart. Episode, 36: 199-204 |
[12] | Denison R H, 1978. Placodermi. Stuttgart: Gustav Fischer Verlag. 1-128 |
[13] | Deschênes C, 2019. Description d'une nouvelle espèce de poisson placoderme du Dévonien appartenant au genre Groenlandaspis et sa position phylogénétique. Québec: Université du Québec à Rimouski. 1-67 |
[14] | Dupret V, 2010. Revision of the genus Kujdanowiaspis Stensi?, 1942 (Placodermi, Arthrodira, “Actinolepida”) from the Lower Devonian of Podolia (Ukraine). Geodiversitas, 32: 5-63 |
[15] | Dupret V, Blieck A, 2009. The Lochkovian-Pragian boundary in Podolia (Lower Devonian, Ukraine) based upon placoderm vertebrates. C R Geosci, 341: 63-70 |
[16] | Dupret V, Zhu M, 2008. The earliest phyllolepid (Placodermi, Arthrodira) from the late Lochkovian (Early Devonian) of Yunnan (South China). Geol Mag, 145: 257-278 |
[17] | Dupret V, Goujet D, Mark-Kurik E, 2007. A new genus of placoderm (Arthrodira: ‘Actinolepida’) from the Lower Devonian of Podolia (Ukraine). J Vert Paleont, 27: 266-284 |
[18] | Dupret V, Zhu M, Wang J Q, 2017. Redescription of Szelepis Liu, 1981 (Placodermi, Arthrodira), from the Lower Devonian of China. J Vert Paleont, 37: e1312422 |
[19] | Engelman R K, 2023a. Giant, swimming mouths: oral dimensions of extant sharks do not accurately predict body size in Dunkleosteus terrelli (Placodermi: Arthrodira). PeerJ, 11: e15131 |
[20] | Engelman R K, 2023b. A Devonian fish tale: a new method of body length estimation suggests much smaller sizes for Dunkleosteus terrelli (Placodermi: Arthrodira). Diversity, 15: 318 |
[21] | Gardiner B G, 1990. Placoderm fishes:diversity through time. In: Taylor P D, Larwoo G P eds. Major Evolutionary Radiation. Oxford: Clarendon Press. 305-319 |
[22] | Gardiner B G, Miles R S, 1994. Eubrachythoracid arthrodires from Gogo, Western Australia. Zool J Linn Soc, 112: 443-477 |
[23] | Giles S, Friedman M, Brazeau M D, 2015. Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome. Nature, 520: 82-85 |
[24] | House M R, 2002. Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeogr Palaeoclimatol Palaeoecol, 181: 5-25 |
[25] | Janvier P, 1996. Early Vertebrates. Oxford: Clarendon Press. 1-393 |
[26] | Jobbins M, Rücklin M, Ferrón H G et al., 2022. A new selenosteid placoderm from the Late Devonian of the eastern Anti-Atlas (Morocco) with preserved body outline and its ecomorphology. Front Ecol Evol, 10: 969158 |
[27] | Kaiser S I, Aretz M, Becker R T, 2016. The global Hangenberg Crisis (Devonian-Carboniferous transition): review of a first-order mass extinction. Geol Soc Lond Spec Publ, 423: 387-437 |
[28] | Lebedev O A, Engelman R K, Skutschas P P et al., 2023. Structure, growth and histology of gnathal elements in Dunkleosteus (Arthrodira, Placodermi), with a description of a new species from the Famennian (Upper Devonian) of the Tver Region (North-Western Russia). Diversity, 15: 648 |
[29] | Liu Y H, 1979. On the arctolepid Arthrodira from Lower Devonian of Yunnan. Vert PalAsiat, 17: 23-34 |
[30] | Long J A, 2011. The Rise of Fishes-500 Million Years of Evolution. 2nd ed. Baltimore: Johns Hopkins Univerisity Press. 1-304 |
[31] | Long J A, Trinajstic K, 2010. The Late Devonian Gogo Formation L?gerstatte of Western Australia: exceptional early vertebrate preservation and diversity. Annu Rev Earth Pl Sc, 38: 255-279 |
[32] | Long J A, Mark-Kurik E, Johanson Z et al., 2015. Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature, 517: 196-199 |
[33] | Maisch M W, 1998. Wildungenichthys grossi n. gen., n. sp. - a new selenosteid arthrodire (Placodermi, Arthrodira) from the Kellwasserkalk (late Frasnian, Upper Devonian) of Bad Wildungen (Hessen, W-Germany). Palaontol Z, 72: 373-382 |
[34] | Miles R S, 1969. Features of placoderm diversification and the evolution of the arthrodire feeding mechanism. Trans R Soc Edinb Earth Sci, 68: 123-170 |
[35] | Pan J, Dineley D L, 1988. A review of early (Silurian and Devonian) vertebrate biogeography and biostratigraphy of China. Proc Biol Sci, 235: 29-61 |
[36] | Pan Z H, Niu Z, Xian Z et al., 2023. A novel specimen-based mid-Paleozoic dataset of antiarch placoderms (the most basal jawed vertebrates). Earth Syst Sci Data, 15: 41-51 |
[37] | Qiao T, King B, Long J A et al., 2016. Early gnathostome phylogeny revisited: multiple method consensus. PLoS One, 11: e0163157 |
[38] | Qie W, Algeo T J, Luo G et al., 2019. Global events of the Late Paleozoic (Early Devonian to Middle Permian): a review. Palaeogeogr Palaeoclimatol Palaeoecol, 531: 109259 |
[39] | Reeves J C, Wogelius R A, Keating J N et al., 2023. Lasanius, an exceptionally preserved Silurian jawless fish from Scotland. Paleontology, 66: e12643 |
[40] | Rücklin M, 2010. A new Frasnian placoderm assemblage from the eastern Anti-Atlas, Morocco, and its palaeo-biogeographical implications. Palaeoworld, 19: 87-93 |
[41] | Rücklin M, Long J A, Trinajstic K, 2015. A new selenosteid arthrodire (‘Placodermi’) from the Late Devonian of Morocco. J Vert Paleont, 35: e908896 |
[42] | Sallan L C, Coates M I, 2010. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proc Natl Acad Sci USA, 107: 10131-10135 |
[43] | Stigall A L, 2012. Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today, 22: 4-9 |
[44] | Talent J A, Mawson R, Andrew A S et al., 1993. Middle Palaeozoic extinction events: faunal and isotopic data. Palaeogeogr Palaeoclimatol Palaeoecol, 104: 139-152 |
[45] | Trinajstic K, Briggs D E, Long J A. 2022. The Gogo Formation Lagerst?tte: a view of Australia’s first great barrier reef. J Geol Soc, 179: 2021-2105 |
[46] | Walliser O H, 1996. Global events in the Devonian and Carboniferous. In: Walliser O H ed. Global Events and Event Stratigraphy in the Phanerozoic. Berlin, Heidelberg: Springer Berlin Heidelberg. 225-250 |
[47] | White E I, 1952. Australian arthrodires. Bull Br Mus Nat Hist (Geol), 1: 249-304 |
[48] | Young G C, 1981. New Early Devonian brachythoracids (placoderm fishes) from the Taemas-Wee Jasper region of New South Wales. Alcheringa, 5: 245-271 |
[49] | Young G C, 2009. New arthrodires (Family Williamsaspididae) from Wee Jasper, New South Wales (Early Devonian), with comments on placoderm morphology and palaeoecology. Acta Zool, 90: 69-82 |
[50] | Young G C, 2010. Placoderms (armored fish): dominant vertebrates of the Devonian period. Annu Rev Earth Pl Sc, 38: 523-550 |
[51] | Young G C, Burrow C J, Long J A et al., 2010. Devonian macrovertebrate assemblages and biogeography of East Gondwana (Australasia, Antarctica). Palaeoworld, 19: 55-74 |
[52] | Zhu M, 2000. Catalogue of Devonian vertebrates in China, with notes on bio-events. Cour Forsch-Inst Senckenberg, 223: 373-390 |
[53] | Zhu M, Wang J Q, Wang S T, 2010. A new antarctaspid arthrodire (placoderm fish) from the Lower Devonian of Guangxi, China. Vert PalAsiat, 48: 101-110 |
[54] | Zhu M, Yu X, Ahlberg P E et al., 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature, 502: 188-193 |
[55] | Zhu M, Ahlberg P E, Pan Z H et al., 2016. A Silurian maxillate placoderm illuminates jaw evolution. Science, 354: 334-336 |
[56] | Zhu Y A, Zhu M, Wang J Q, 2016. Redescription of Yinostius major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the interrelationships of Brachythoraci. Zool J Linn Soc, 176: 806-834 |
[57] | Zhu Y A, Li Q, Lu J et al., 2022. The oldest complete jawed vertebrates from the early Silurian of China. Nature, 609: 954-958 |
/
〈 | 〉 |