欢迎访问《古脊椎动物学报》官方网站,今天是

湖南中泥盆统跳马涧组中华沟鳞鱼再研究

  • 罗彦超 ,
  • 朱敏 ,
  • 卢立伍 ,
  • 潘照晖
展开
  • 1 中国科学院古脊椎动物与古人类研究所,中国科学院脊椎动物演化与人类起源重点实验室 北京 100044
    2 中国科学院大学 北京 100049
    3 中国地质博物馆 北京 100034

收稿日期: 2022-05-08

  网络出版日期: 2023-09-01

基金资助

国家自然科学基金(42002015);国家自然科学基金(41872023);国家自然科学基金(42130209);国家自然科学基金(42272028);中国科学院青年创新促进会(2021070);现代古生物学和地层学国家重点实验室(193121)

Reappraisal of Bothriolepis sinensis Chi, 1940 from the Tiaomachien Formation, Hunan, China

  • Yan-Chao LUO ,
  • Min ZHU ,
  • Li-Wu LU ,
  • Zhao-Hui PAN
Expand
  • 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044
    2 University of Chinese Academy of Sciences Beijing 100049
    3 Geological Museum of China Beijing 100034

Received date: 2022-05-08

  Online published: 2023-09-01

摘要

计荣森先生于1940年基于湖南长沙附近中泥盆统跳马涧组采集到的一些以前中背片为代表的胴甲鱼类标本命名了中华沟鳞鱼(Bothriolepis sinensis ), 这是在中国正式命名的第一种古生代脊椎动物。虽然卢立伍于1988年对后续出产于模式种产地的其他中华沟鳞鱼材料进行了补充描述,但研究者对中华沟鳞鱼的形态学特征和系统发育仍缺乏全面认识。在此基于计荣森先生所采集的样本及一些收藏于中国地质博物馆未正式发表的化石,对中华沟鳞鱼进行了再研究,补充了其头部与躯甲的部分特征。与其他沟鳞鱼类相比,中华沟鳞鱼拥有以下一系列特征:较大的听上加厚区、颅顶甲长宽比1.4-1.6、较宽的眶窗(宽于颅顶甲的1/3)以及扇形的眶前凹等。系统发育分析结果显示,B. askinae 并非位于沟鳞鱼支系的最原始位置;中华沟鳞鱼与广东沟鳞鱼因同样拥有纤细的附肢近端(长宽比大于7)而形成了一个稳定的单系。本研究中绝大部分的中国种类均位于同一支系上,该支系的共有衍征为其胸鳍感觉管从第一腹中片延伸至第二腹中片。此外,基于“深骨”平台数据的古生物地理可视化分析结果表明,沟鳞鱼类最早于艾菲尔期出现在华南与东冈瓦纳,并迅速地辐射并扩散至全球,最终于法门期在瑞亚克洋两岸表现出了高度的物种多样性。

本文引用格式

罗彦超 , 朱敏 , 卢立伍 , 潘照晖 . 湖南中泥盆统跳马涧组中华沟鳞鱼再研究[J]. 古脊椎动物学报, 2023 , 61(4) : 261 -276 . DOI: 10.19615/j.cnki.2096-9899.230901

Abstract

Bothriolepis sinensis Chi 1940, mainly based on anterior median dorsal plates from the Middle Devonian Tiaomachien Formation of Hunan, is the first Paleozoic vertebrate taxon erected in China. Although additional materials of B. sinensis from the type locality were described by Lu in 1988, its morphology and phylogeny remain poorly understood. In this study, we complemented the morphology of the skull and trunk armor of B. sinensis based on Chi’s specimens housed in the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, and several previously undescribed specimens in the Geological Museum of China. Bothriolepis sinensis differs from other Bothriolepis in the following combination of characteristics: enlarged supraotic thickening, length/width ratio of head shield 1.4-1.6, broad orbital fenestra (greater than 1/3 of the head shield width), and fan-shaped preorbital recess. The phylogenetic analysis did not place B. askinae in the most basal position of the genus and revealed that B. sinensis and B. kwangtungensis consistently from a monophyletic group characterized by their slender proximal segment of the pectoral fin (length/width ratio greater than 7). A majority of Chinese Bothriolepis species (B. niushoushanensis , B. lochangensis , B. tungseni , B. kwangtungensis and B. sinensis ) were clustered in a clade characterized by the pectoral pit-line on the ventral central plate 1 extending to the ventral central plate 2. The paleogeographic reconstruction using the data from the DeepBone platform showed that Bothriolepis had its oldest occurrences in South China and East Gondwana in Eifelian, dispersed rapidly worldwide, and then diversified across the coasts of the Rheic Ocean.

参考文献

[1] Brazeau M D, 2009. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature, 457: 305-308
[2] Carr R K, 1995. Placoderm diversity and evolution. Bull Mus Natl Hist Nat, Paris, Sér 4, Sect C, 17: 85-125
[3] Chang K J, 1965. New antiarchs from the Middle Devonian of Yunnan. Vert PalAsiat, 9: 1-9
[4] Charest F, Johanson Z, Cloutier R, 2018. Loss in the making: absence of pelvic fins and presence of paedomorphic pelvic girdles in a Late Devonian antiarch placoderm (jawed stem-gnathostome). Biol Lett, 14: 20180199
[5] Chi Y S, 1940. On the discovery of Bothriolepis in the Devonian of central Hunan. Bull Geol Soc China, 20: 57-73
[6] Cope E D, 1885. The position of Pterichthys in the system. Am Nat, 19: 289-291
[7] Davis S P, Finarelli J A, Coates M I, 2012. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature, 486: 247-250
[8] Downs J P, Daeschler E B, Garcia V E et al., 2016. A new large-bodied species of Bothriolepis (Antiarchi) from the Upper Devonian of Ellesmere Island, Nunavut, Canada. J Vert Paleont, 36: e1221833
[9] Dupret V, Sanchez S, Goujet D et al., 2014. A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature, 507: 500-503
[10] Dupret V, Byrne H M, Castro N et al., 2023. The Bothriolepis (Placodermi, Antiarcha) material from the Valentia Slate Formation of the Iveragh Peninsula (middle Givetian, Ireland): morphology, evolutionary and systematic considerations, phylogenetic and palaeogeographic implications. PLoS One, 18: e0280208
[11] Eichwald E, 1840. Die Tier-und Pflanzenreste des alten roten Sandsteins und Bergkalks im Nowgorodschen Gouvernement. Saint-Petersburg Acad Imp Sci Bull Sci, 7: 78-91
[12] Giles S, Rücklin M, Donoghue P C J, 2013. Histology of “placoderm” dermal skeletons: implications for the nature of the ancestral gnathostome. J Morphol, 274: 627-644
[13] Giles S, Darras L, Clement G et al., 2015. An exceptionally preserved Late Devonian actinopterygian provides a new model for primitive cranial anatomy in ray-finned fishes. Proc R Soc B, 282: 20151485
[14] Goloboff P A, Catalano S A, 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32: 221-238
[15] Goujet D F, Young G C, 1995. Interrelationships of placoderms revisited. Geobios Mém Spéc, 19: 89-95
[16] Gross W, 1965. Bothriolepis cf. panderi Lahusen in einem Geschiebe von Travemünde bei Lübeck. Mitt Geol Staatsinst Hamburg, 34: 138-141
[17] Janvier P, 1996. The dawn of the vertebrates: characters versus common ascent in the rise of current vertebrate phylogenies. Palaeontology, 39: 259-287
[18] Janvier P, Pan J, 1982. Hyrcanaspis bliecki n. g. n. sp., a new primitive euantiarch (Antiarcha, Placodermi) from the Middle Devonian of northeastern Iran, with a discussion on antiarch phylogeny. N J Geol Palaont Abh, 164: 364-392
[19] Johanson Z, 1997. New antiarchs (Placodermi) from the Hunter Siltstone (Famennian) near Grenfell, N.S.W. Alcheringa, 21: 191-217
[20] Ke Y, Shen S Z, Shi G R et al., 2016. Global brachiopod palaeobiogeographical evolution from Changhsingian (Late Permian) to Rhaetian (Late Triassic). Palaeogeogr, Palaeoclimatol, Palaeoecol, 448: 4-25
[21] Leidy J, 1856. Descriptions of some remains of fishes from the Carboniferous and Devonian formations of the United States. J Acad Nat Sci Phila, 3: 159-165
[22] Liu Y H, 1962. A new species of Bothriolepis from Yunnan. Vert PalAsiat, 6: 80-85
[23] Long J A, 1983. New bothriolepid fish from the Late Devonian of Victoria, Australia. Palaeontology, 26: 295-320
[24] Long J A, Werdelin L, 1986. A new Late Devonian bothriolepid (Placodermi, Antiarcha) from Victoria, with descriptions of other species from the state. Alcheringa, 10: 355-399
[25] Long J A, Mark-Kurik E, Johanson Z et al., 2015. Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature, 517: 196-199
[26] Lu L W, 1988. New data of Bothriolepis (Placodermi:Antiaroha) from Middle Devonian of Central Hunan, China. In: Xin Y S, Huang Z Z, Wang F Q et al. eds. Geological Museum Study. Beijing: Seismological Press. 69-77
[27] Luk?evi?s E, 1996. Bothriolepid antiarchs (Placodermi, Bothriolepididae) from the North-western part of East European platform. Ph. D thesis. Riga: University of Latvia. Summary
[28] Luk?evi?s E, 2001. Bothriolepid antiarchs (Vertebrata, Placodermi) from the Devonian of the north-western part of the East European Platform. Geodiversitas, 23: 489-609
[29] Luk?evi?s E, 2021. Revision of asterolepidoid antiarch remains from the Ogre Formation (Upper Devonian) of Latvia. Proc Est Acad Sci Geol, 70: 3-17
[30] Maddison W P, Maddison D R, 2019. Mesquite: a modular system for evolutionary analysis. Version 3.61. Updated at http://www.mesquiteproject.org, accessed 21 February 2021
[31] McCoy F, 1848. On some new fossil fish from the Carboniferous Period. Ann Mag Nat Hist, 2: 1-10, 115-133
[32] Miles R S, 1968. The Old Red Sandstone antiarchs of Scotland: Family Bothriolepididae. Palaeontogr Soc Monogr, 122: 1-130
[33] Miller H, 1841. The Old Red Sandstone or New Walks in an Old Field. Edinburgh: John Johnstone. 1-275
[34] Moloshnikov S V, 2004. Crested antiarch Bothriolepis zadonica HD Obrucheva from the Lower Famennian of Central European Russia. Acta Palaeontol Pol, 49: 135-146
[35] Moloshnikov S V, 2008. Devonian antiarchs (Pisces, Antiarchi) from central and Southern European Russia. Paleontol J, 42: 691-773
[36] Moloshnikov S V, 2009. New data on Late Devonian bothriolepidid placoderms (Pisces, Antiarchi) from Tuva. Paleontol J, 43: 558-568
[37] Moy-Thomas J A, Miles R S, 1971. Palaeozoic Fishes. London: Chapman and Hall. 1-259
[38] Pan J, 1958. On the age of Tiaomachien series of Hunan. Acta Geol Sin, 38: 135-144
[39] Pan J, 1959. Devonian fish fossils of China and their stratigraphic and geographic distributions. Monogr Sum Basic Data Chinese Geol, 1: 23-34
[40] Pan J, Dineley D L, 1988. A review of early (Silurian and Devonian) vertebrate biogeography and biostratigraphy of China. Proc R Soc B, 235: 29-61
[41] Pan J, Wang S T, Liu S Y et al., 1980. Discovery of Devonian Bothriolepis and Remigolepis in Ningxia. Acta Geol Sin, 3: 175-185
[42] Pan J, Huo F C, Cao J X et al., 1987. Continental Devonian System of Ningxia and its Biotas. Beijing: Geological Publishing House. 1-237
[43] Pan Z H, Zhu M, 2019. VPPDB: Hosting the data for Vertebrate Paleoanthropology. Acta Geol Sin Engl Ed, 93: 61-63
[44] Pan Z H, Zhu M, Zhu Y A et al., 2018. A new antiarch placoderm from the Emsian (Early Devonian) of Wuding, Yunnan, China. Alcheringa, 17: 1-19
[45] Pan Z H, Niu Z B, Xian Z M et al., 2022. A novel specimen-based mid-Paleozoic dataset of antiarch placoderms (the most basal jawed vertebrates). Earth Syst Sci Data, 15: 41-51
[46] Qiao T, Zhu M, 2015. A new Early Devonian lungfish from Guangxi, China, and its palaeogeographic significance. Alcheringa, 39: 428-437
[47] Qiao T, King B, Long J A et al., 2016. Early gnathostome phylogeny revisited: multiple method consensus. PLoS One, 11: e0163157
[48] Qie W K, Liang K, K?nigshof P, 2019. Devonian palaeoecosystems and palaeoenvironments of South China. Paleobio Paleoenv, 99: 1-5
[49] Scotese C R, 2002. Palaeo Map Project. Available at www.scotese.com
[50] Scotese C R, Song H, Mills B J W et al., 2021. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci Rev, 215: 103503
[51] Stensi? E A, 1948. On the Placodermi of the Upper Devonian of East Greenland. II. Antiarchi: subfamily Bothriolepinae. With an attempt at a revision of the previously described species of that family. Medd Gr?nl, 139: 1-622
[52] Thomson K S, Thomas B, 2001. On the status of species of Bothriolepis (Placodermi, Antiarchi) in North America. J Vert Paleont, 21: 679-686
[53] Trinajstic K, Boisvert C, Long J A et al., 2015. Pelvic and reproductive structures in placoderms (stem gnathostomes). Biol Rev, 90: 467-501
[54] Wang G T, 1984. The investigation of sedimentary facies of Tiaomajian Formation in Tiaomajian Town of Changsha Country. Hunan Geol, 3: 45-56, 72
[55] Wang J Q, 1991. The Antiarchi from Early Silurian of Hunan. Vert PalAsiat, 29: 240-244
[56] Wang Y J, Zhu M, 2018. Redescription of Phymolepis cuifengshanensis (Antiarcha: Yunnanolepididae) using high-resolution computed tomography and new insights into anatomical details of the endocranium in antiarchs. PeerJ, 6: e4808
[57] Wang Y J, Zhu M, 2021. New data on the headshield of Parayunnanolepis xitunensis (Placodermi, Antiarcha), with comments on nasal capsules in antiarchs. J Vert Paleont, 40: e1855189
[58] Young G C, 1988. Antiarchs (placoderm fishes) from the Devonian Aztec Siltstone, Southern Victoria Land, Antarctica. Palaeontogr Abt A, 202: 1-125
[59] Young G C, Friedrich Pfeil. 2010. A new antiarch (placoderm fish:Devonian) from the south coast of New South Wales, Australia. In: Elliott D K, Maisey J G, Yu X et al. eds. Morphology, Phylogeny and Paleobiogeography of Fossil Fishes (Honoring Meemann Chang). Munich: Verlag Dr. 85-100
[60] Young G C, Gorter J D, 1981. A new fish fauna of Middle Devonian age from the Taemas/Wee Jasper region of New South Wales. Bull Bur Min Res Geol Geophys, 209: 85-147
[61] Zhao W J, Zhu M, 2010. Siluro-Devonian vertebrate biostratigraphy and biogeography of China. Palaeoworld, 19: 4-26
[62] Zhao W J, Zhu M, Liu S et al., 2016. A new look at the Silurian fish-bearing strata around the Shanmen Reservoir in Lixian, Hunan Province. J Stratigr, 40: 341-350
[63] Zhu M, Yu X B, Choo B et al., 2012. An antiarch placoderm shows that pelvic girdles arose at the root of jawed vertebrates. Biol Lett, 8: 453-456
[64] Zhu M, Yu X B, Ahlberg P E et al., 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature, 502: 188-193
[65] Zhu M, Ahlberg P E, Pan Z H et al., 2016. A Silurian maxillate placoderm illuminates jaw evolution. Science, 354: 34-336
[66] Zhu Y A, Giles S, Young G C et al., 2021. Endocast and bony labyrinth of a Devonian “placoderm” challenges stem gnathostome phylogeny. Curr Biol, 31: 1112-1118
[67] Zhu Y A, Li Q, Lu J et al., 2022. The oldest complete jawed vertebrates from the early Silurian of China. Nature, 609: 954-958
文章导航

/