辽宁大连骆驼山早更新世巨副驼头骨化石
收稿日期: 2023-02-10
网络出版日期: 2023-06-16
基金资助
中国科学院战略性先导科技专项(B类)(XDB26030304);大连金普新区管理委员会“大连普湾骆驼山第四纪脊椎动物化石综合研究”项目和中国科学院古生物化石发掘与修理专项资助
A skull of Early Pleistocene Paracamelus gigas (Artiodactyla, Mammalia) from Luotuo Hill in Dalian, Northeast China
Received date: 2023-02-10
Online published: 2023-06-16
起源于中始新世的骆驼科(Camelidae)是一支在北美的新生代期间演化非常成功的类群,具有很大的多样性。其中的一类约在中中新世期间经白令陆桥迁徙到亚洲,随后扩散到欧洲和非洲。虽然骆驼科在北美新生代期间演化辐射出很多种类,但从北美扩散到旧大陆的骆驼只有一个族(Camelini)的两个属:副驼(Paracamelus)和骆驼(Camelus)。巨副驼(Paracamelus gigas)是我国境内最早发现的化石骆驼,一直被认为是起源于北美的Megatylopus之类的大型骆驼,然后扩散到旧大陆其他地区,最后演化成诺氏驼(Camelus knoblochi)及双峰驼(C. bactrianus)。但也有学者认为骆驼属起源于非洲。最近在大连复州湾骆驼山金远洞第四纪堆积剖面的第4层中出土了一些骆驼化石,其中1件破损的头骨和带有两枚下臼齿的残破下颌骨经研究被归入巨副驼。根据对巨副驼及其他副驼种的地理及年代分布的研究,巨副驼的直接祖先应该类似于晚上新世分布在欧亚大陆的体型稍小的阿氏副驼(P. alexejevi)或相似类型。大连出产的巨副驼在形态及大小上与诺氏驼接近,但其齿列长度略大于诺氏驼且明显大于野生双峰驼(C. ferus)及单峰驼(C. dromedarius)。而巨副驼与诺氏驼在地理分布上的重叠范围较大,时代分布上呈先后关系,因此可以认为巨副驼是诺氏驼的直接祖先,巨副驼在中更新世晚期通过P3收缩或简化及p3消失而演化成诺氏驼。综合化石层位的古地磁测年及花粉分析结果判断,巨副驼在早更新世的1.1~1.52 Ma期间栖息在大连半岛的森林草原环境中。
董为 , 刘文晖 , 白炜鹏 , 刘思昭 , 王元 , 刘金远 , 金昌柱 . 辽宁大连骆驼山早更新世巨副驼头骨化石[J]. 古脊椎动物学报, 2024 , 62(1) : 47 -68 . DOI: 10.19615/j.cnki.2096-9899.230616
Originated in North America in the Middle Eocene, camelids were a successful group with very large diversity. But the camels emigrated to the Old World from North America, probably during the middle stage of the Middle Miocene, and did not radiate much as those in North America, represented by only two genera Paracamelus and Camelus. The former was considered as giving rise to the latter, but the detailed relationship of the Old World camelines was controversial. The new camel material unearthed from Layer 4 in the Jinyuan Cave at Luotuo Hill in Dalian, Liaodong peninsula in Northeast China, was described and referred to as Paracamelus gigas. Its dentition length is slightly longer than that of Camelus knoblochi but evidently larger than that of C. ferus and C. dromedarius. Based on the fossil records and morphometric evidences, P. gigas originated from a form similar to P. alexejevi in the Late Pliocene in the Old World, instead of from Megatylopus gigas of North America and then migrated into Asia as previously thought. The morphometric similarities between the Early Pleistocene Dalian specimens and those of the Middle and Late Pleistocene C. knoblochi indicate that P. gigas probably gave rise to C. knoblochi as formerly postulated and likely in the late Early Pleistocene by reduction or simplifying of P3 and P4, disappearance of p3 and shortening of dentition length. P. gigas inhabited in the forest steppe environment of Liaodong peninsula from 1.1 to 1.52 Ma based on paleomagnetic dating and pollen evidence.
Key words: Dalian; Early Pleistocene; cave deposits; camel; Paracamelus; evolution
[1] | Bai W P, Dong W, Liu J Y et al., 2017. New material of Axis shansius (Mammalia, Artiodactyla) and phylogenetic consideration of Axis. Quat Sci, 37(4): 821-827 |
[2] | Boule M, Breuil H, Licent E et al., 1928. Le Paleolithique de la Chine. Paris: Masson et cie, Editeurs. 1-138 |
[3] | Colombero S, Bonelli E, Pavia M et al., 2017. Paracamelus (Mammalia, Camelidae) remains from the late Messinian of Italy: insights into the last camels of western Europe. Hist Biol, 29(4): 509-518 |
[4] | Dong W, 2004. The dental morphological characters and evolution of Cervidae. Acta Anthrop Sin, 23(supp): 286-295 |
[5] | Dong W, Hou Y M, Yang Z M et al., 2014. Late Pleistocene mammalian fauna from Wulanmulan Paleolithic Site, Nei Mongol, China. Quatern Int, 347: 139-147 |
[6] | Ge J Y, Deng C L, Shao Q F et al., 2021. Magnetostratigraphic and uranium-series dating of fossiliferous cave sediments in Jinyuan Cave, Liaoning Province, northeast China. Quatern Int, 591: 5-14 |
[7] | Geraads D, Barr W A, Reed D et al., 2021. New remains of Camelus grattardi (Mammalia, Camelidae) from the Plio-Pleistocene of Ethiopia and the phylogeny of the genus. J Mammal Evol, 28: 359-370 |
[8] | Harington C R, 2011. Pleistocene vertebrates of the Yukon Territory. Quaternary Sci Rev, 30: 2341-2354 |
[9] | Harrison J A, 1985. Giant camels from the Cenozoic of North America. Smithson Contrib Paleobiol, 57: 1-29 |
[10] | Honey J G, Harrison J A, Prothero D R et al., 1998. Camelidae. In: Janis C M, Scott K M, Jacobs L L eds.eds. Evolution of Tertiary Mammals of North America. Vol I: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. New York: Cambridge University Press. 439-462 |
[11] | Howell F C, Fichter L S, Wolf R, 1969. Fossil camels in the Omo beds, southern Ethiopia. Nature, 223: 150-152 |
[12] | Hu C K, Qi T, 1978. Gongwangling Pleistocene mammalian fauna of Lantian, Shaanxi. Palaeont Sin, New Ser C, 21: 1-64 |
[13] | Jiangzuo Q G, Gimranov D, Liu J Y et al., 2021. A new fossil marten from Jinyuan Cave, northeastern China reveals the origin of the Holarctic marten group. Quatern Int, 591: 47-58 |
[14] | Jin C Z, Wang Y, Liu J Y et al., 2021. Late Cenozoic mammalian faunal evolution at the Jinyuan Cave site of Luotuo Hill, Dalian, Northeast China. Quatern Int, 577: 15-28 |
[15] | K?nig H E, Liebich H-G (Translated by ChenY X, LiuW M, LeiZ H et al.), 2009. Veterinary Anatomy of Domestic Mammals. Beijing: China Agriculture University Press. 1-808 |
[16] | Kostopoulos D S, Sen S, 1999. Late Pliocene (Villafranchian) mammals from Sarikol Tepe, Ankara, Turkey. Mitt Bayer Staatssamml Pal?ont Hist Geol, 39: 165-202 |
[17] | Li Y X, Ji H X, 1981. Environmental change in Peking Man’s Time. Vert PalAsiat, 19(4): 337-347 |
[18] | Liaoning Provincial Institute of Geological Exploration, 2013. Regional Geology of Liaoning Province. Beijing: Geological Publishing House. 143-172 |
[19] | Likius A, Brunet M, Geraads D et al., 2003. Le plus vieux Camelidae Mammalia, Artiodactyla d’Afrique: limite Mio-Pliocène, Tchad. Bull Soc Géol Fr, 174(2): 187-193 |
[20] | Liu J Y, Liu J Y, Zhao H W et al., 2021. The giant short-faced hyena Pachycrocuta brevirostris (Mammalia, Carnivora, Hyaenidae) from Northeast Asia: a reinterpretation of subspecies differentiation and intercontinental dispersal. Quatern Int, 577: 29-51 |
[21] | Liu J Y, Zhang Y Q, Chi Z Q et al., 2022. A Late Pliocene Hipparion houfenense fauna from Yegou, Nihewan Basin and its biostratigraphic significance. Vert PalAsiat, 60(4): 278-323 |
[22] | Liu S Z, Wang Y, Dong W et al., 2017a. Preliminary report on the 2016’s excavation at Luotuoshan Locality of Dalian, Liaoning Province. Quaternary Sci, 37(4): 908-915 |
[23] | Liu S Z, Dong W, Wang Y et al., 2017b. New materials of Cervus (Sika) magnus from Luotuoshan Locality of Dalian, Liaoning Province. Quaternary Sci, 37(4): 838-844 |
[24] | Liu W H, Hou S K, Zhang X X, 2023. Revision of the Late Cenozoic camelids from Yushe Basin, Shanxi, with comments on Chinese fossil camels. Quaternary Sci, 43(3): 712-751 |
[25] | Logvynenko V M, 2001. Paracamelus minor (Camelidae, Tylopoda) - a new camelid species from the Middle Pliocene of Ukraine. Vestn Zool, 35(1): 39-42 |
[26] | Macdonald J R, 1959. The Middle Pliocene mammalian fauna from Smiths Valley, Nevada. J Paleontol, 33(5): 872-887 |
[27] | Made J van der, Morales J, 1999. Family Camelidae. In: R?ssner G, Hessig K eds. The Miocene Land Mammals of Europe. München: Verlag Dr. 221-224 |
[28] | Made J van der, Morales J, Sen S et al., 2002. The first camel from the Upper Miocene of Turkey and the dispersal of the camels into the Old World. C R Palevol, 1: 117-122 |
[29] | Made J van der, Morales J, Montoya P, 2006. Late Miocene turnover in the Spanish mammal record in relation to palaeoclimate and the Messinian Salinity Crisis. Palaeogeogr, Palaeoclimatol, Palaeoecol, 238: 228-246 |
[30] | Martini P, Geraads D, 2018. Camelus thomasi (Mammalia, Camelidae) from the type-locality Tighennif, Algeria. Geodiversitas, 40(5): 115-134 |
[31] | Matthew W D, Cook H J, 1909. A Pliocene fauna from western Nebraska. Bull Am Mus Nat Hist, 26: 361-414 |
[32] | Morales J, 1984. Venta del Moro: su macrofauna de mamiferos, y biostratigrafia continental del Mioceno terminal Mediterraneo. Tesis doctoral. Madrid: Editorial de la Universidad Complutense de Madrid. 1-340 |
[33] | Nowak R M, Paradiso J L, 1983. Walker’s Mammals of the World. Baltimore: The Johns Hopkins University Press. 1-1362 |
[34] | Pacheco Torres V R, Enciso A A, Porras E G, 1986. The Osteology of South American Camelids. Archaeological Research Tools, Volume 3. Los Angeles: Institute of Archaeology, University of California. 1-32 |
[35] | Pan Y, Liu S Z, Dong W et al., 2020. New materials of Eucladoceros (Artiodactyla, Mammalia) from Luotuoshan Locality of Dalian, Liaoning Province. Quaternary Sci, 40(1): 275-282 |
[36] | Pickford M, Morales J, Soria D, 1995. Fossil camels from the Upper Miocene of Europe: implications for biogeography and faunal change. Geobios, 28(5): 641-650 |
[37] | Qi G Q, 1975. Quaternary mammalian fossils from Salawusu River District, Nei Mongol. Vert PalAsiat, 13(4): 239-249 |
[38] | Qin C, Wang Y, Liu S Z et al., 2021. First discovery of fossil Episiphneus (Myospalacinae, Rodentia) from Northeast China. Quatern Int, 591: 59-69 |
[39] | Qiu Z X, Huang W L, Guo Z H, 1987. The Chinese hipparionine fossils. Palaeont Sin, New Ser C, 25: 1-250 |
[40] | Qiu Z X, Qiu Z D, Deng T et al., 2013. Neogene Land Mammal Stages/Ages of China—Toward the goal to establish an Asian Land Mammal Stage/Age scheme. In: Wang X M, Flynn L J, Fortelius M eds. Fossil Mammals of Asia—Neogene Biostratigraphy and Chronology. New York: Colombia University Press. 29-90 |
[41] | Rybczynski N, Gosse J C, Harington C R et al., 2013. Mid-Pliocene warm-period deposits in the high arctic yield insight into camel evolution. Nat Commun, 4: 1550 |
[42] | Schlosser M, 1903. Die fossilen S?ugethiere Chinas nebst einer Odontographie der recenten Antilopen. Abh Math Phys KL K Bayer Akad Wiss, München, 22(1): 1-220 |
[43] | Shen G, Gao X, Gao B et al., 2009. Age of Zhoukoudian Homo erectus determined with 26Al/10Be burial dating. Nature, 458: 198-200 |
[44] | Shen H, Zhao K L, Ge J Y et al., 2021. Early and Middle Pleistocene vegetation and its impact on faunal succession on the Liaodong Peninsula, Northeast China. Quatern Int, 591: 15-23 |
[45] | Shpansky A V, Aliyassova V N, Ilyina S A, 2016. The Quaternary mammals from Kozhamzhar Locality (Pavlodar Region, Kazakhstan). Am J Appl Sci, 13(2): 189-199 |
[46] | Stidham T A, Smith N A, Li Z H, 2021. A Pleistocene raven skull (Aves, Corvidae) from Jinyuan Cave, Liaoning Province, China. Quatern Int, 591: 80-86 |
[47] | Sun B, Liu S, Liu Y et al., 2021a. Hipparion in Luotuo Hill, Dalian, and evolution of latest Hipparion in China. Quatern Int, 591: 24-34 |
[48] | Sun B, Liu W H, Liu J Y et al., 2021b. Equus qingyangensis in Jinyuan Cave and its palaeozoographic significance. Quatern Int, 591: 35-46 |
[49] | Tang Y J, 1980. Note on a small collection of Early Pleistocene mammalian fossils from northern Hebei. Vert PalAsiat, 18(4): 314-323 |
[50] | Tang Y J, Zong G F, Xu Q Q, 1983. Mammalian fossils and stratigraphy of Linyi, Shanxi. Vert PalAsiat, 21(1): 77-86 |
[51] | Tang Z W, Liu S H, Lin Z R et al., 2003. The Late Pleistocene fauna from Dabusu of Qian’an in Jilin Province of China. Vert PalAsiat, 41(2): 137-146 |
[52] | Teilhard de Chardin P, Piveteau J, 1930. Les mammifères fossils de Nihowan (Chine). Ann Paléont, 19: 1-134 |
[53] | Teilhard de Chardin P, Trassaert M, 1937. Pliocene Camelidae, Giraffidae and Cervidae of S. E. Shansi. Palaeont Sin, New Ser C, 1: 1-56 |
[54] | Titov V V, 2003. Paracamelus from the Late Pliocene of the Black Sea Region. In: Petculescu A, ?tiuc? E eds. Advances in Vertebrate Paleontology ?Hen to Panta?. Bucharest.17-24 |
[55] | Titov V V, 2008. Habitat conditions for Camelus knoblochi and factors in its extinction. Quatern Int, 179: 120-125 |
[56] | Titov V V, Logvynenko V N, 2006. Early Paracamelus (Mammalia, Tylopoda) in Eastern Europe. Acta Zool Cracov, 49A: 163-178 |
[57] | Vangengeim E, Tesakov A S, 2013. Late Miocene mammal localities of Eastern Europe and Western Asia—toward biostratigraphic synthesis. In: Wang X M, Flynn L J, Fortelius M eds. Fossil Mammals of Asia—Neogene Biostratigraphy and Chronology. New York: Colombia University Press. 521-537 |
[58] | Voorhies M R, Corner R G, 1986. Megatylopus(?) cochrani (Mammalia: Camelidae): a re-evaluation. J Vert Paleont, 6(1): 65-75 |
[59] | Wang B Y, Wu W Y, 1979. The artiodactyla. In: IVPP ed. Vertebrate Fossils of China. Beijing: Science Press. 501-620 |
[60] | Wang X M, Flynn L J, Fortelius M, 2013. Introduction—toward a continental Asian biostratigraphic and geochronologic framework. In: Wang X M, Flynn L J, Fortelius M eds. Fossil Mammals of Asia—Neogene Biostratigraphy and Chronology. New York: Colombia University Press. 1-25 |
[61] | Webb S D, 1965. The osteology of Camelops. Bull Los Angeles County Mus, 1: 1-54 |
[62] | Yang Y H S, Li Q, Ni X J et al., 2021. Tooth micro-wear analysis reveals that persistence of beaver Trogontherium cuvieri (Rodentia, Mammalia) in Northeast China relied on its plastic ecological niche in Pleistocene. Quatern Int, 591: 70-79 |
[63] | Young C C, 1932. On the Artiodactyla from the Sinanthropus Site at Chouk’outien. Palaeont Sin, Ser C, 8: 1-158 |
[64] | Zazula G D, Macphee R, Hall E et al., 2016. Osteological assessment of Pleistocene Camelops hesternus (Camelidae, Camelinae, Camelini) from Alaska and Yukon. Am Mus Novit, 3866: 1-45 |
[65] | Zdansky O, 1926. Paracamelus gigas Schlosser. Palaeont Sin, Ser C, 2(4): 1-44 |
[66] | Zhang Y X, Sun D H, An Z S et al., 1999. Mammalian fossils from Late Pliocene (lower MN16) of Lingtai, Gansu Province. Vert PalAsiat, 37(3): 190-199 |
[67] | Zhao S S, Pei J X, Guo S L et al., 1985. Study of chronology of Peking Man Site. In: Wu R K, Ren M E, Zhu X M et al. eds. Multi-disciplinary Study of the Peking Man Site at Zhoukoudian. Beijing: Science Press. 239-240 |
/
〈 | 〉 |