欢迎访问《古脊椎动物学报》官方网站,今天是

柴达木盆地上新世伍氏献文鱼(Cyprinidae: Schizothoracinae)形态学再研究

展开
  • 1 中国科学院古脊椎动物与古人类研究所,中国科学院脊椎动物演化与人类起源重点实验室 北京 100044
    2 中国科学院大学 北京 100049
    3 中国科学院生物演化与环境卓越创新中心 北京 100044
    4 北京师范大学生命科学学院 北京 100091

收稿日期: 2021-05-11

  网络出版日期: 2021-10-26

基金资助

国家自然科学基金(批准号:41872006)(XDB26000000);国家自然科学基金(批准号:41872006)(XDA20070203);中国科学院战略性先导科技专项(编号)(XDA20070203);第二次青藏高原综合科学考察研究(编号)(2019QZKK0705);北京师范大学青年学者项目(王宁)资助

Revisit of Hsianwenia wui (Cyprinidae: Schizothoracinae) from the Pliocene of Qaidam Basin

Expand
  • 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044
    2 University of Chinese Academy of Sciences Beijing 100049
    3 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044
    4 Life Science College, Beijing Normal University Beijing 100091

Received date: 2021-05-11

  Online published: 2021-10-26

摘要

柴达木盆地是研究青藏高原古环境和动物演化历史的一个关键区域。为了适应上新世时期柴达木盆地环境的干旱化,化石裂腹鱼类伍氏献文鱼(Hsianwenia wui)演化出了异常粗大的骨骼。然而,人们对于这种骨骼增粗现象(pachyostosis)的性质仍知之甚少。为了进一步认识这一特征及其生理学机制,对伍氏献文鱼进行了详尽的形态解剖学工作,并识别出了一些新的信息:脑腔前部分叉的嗅束通道、韦伯氏器上发达的第3髓上骨、第5尾前椎支持众多尾鳍短鳍条以及第2尾前椎上一个附加的髓弓(棘)。此外,发现献文鱼骨骼的增粗存在差异性:该现象仅见于内骨骼,外骨骼(膜质骨)一般未见增粗;在成组增粗的内骨骼(如肌间骨:上髓弓小骨和上肋小骨)中,腹侧骨骼较背侧增粗更为明显。伍氏献文鱼匙骨后缘有一个显著而独特的位于胸鳍上方的“肩突”(humeral process), 对比现生鲤科鱼类咀嚼活动中相关肌肉和骨骼的联动关系,认为这个“肩突”的出现与伍氏献文鱼咽颌骨骼(第五角鳃骨)增粗以及研磨坚硬的食物有关。

本文引用格式

毕黛冉, 吴飞翔, 王宁, 张弥曼, 房庚雨 . 柴达木盆地上新世伍氏献文鱼(Cyprinidae: Schizothoracinae)形态学再研究[J]. 古脊椎动物学报, 2022 , 60(1) : 1 -28 . DOI: 10.19615/j.cnki.2096-9899.211026

Abstract

The Qaidam Basin is a key area for understanding the paleoenvironmental and faunal history of the Tibetan Plateau. The fossil schizothoracine fish, Hsianwenia wui, evolved extraordinarily thickened bones to adapt to the aridification of the Qaidam Basin during the Pliocene. However, the nature of the bone thickening itself remains elusive. To promote the further investigation of the physiological mechanism of the pachyostosis and the phylogenetic interrelationships of Hsianwenia and all relevant cyprinids, here we present a comprehensive morphological study of Hsianwenia. We have new information on the anterior part of the cranial cavity, a large supraneural 3 in the Weberian apparatus, numerous procurrent caudal fin rays supported by the preural centrum (Pu) 5, and a neural arch on Pu2. We also find the differentiated pattern of the bone-thickening: the pachyostosis exists in the endoskeleton but not in the dermal skeleton; it is more obvious in ventral bones than in dorsal ones, when the thickening is present in the dorsally and ventrally grouped endoskeletal bones (e.g., the epineural and epipleural intermuscular bones). Considering the integrity of musculoskeletal system manipulating the chewing activities, we suspect that the thickened pharyngeal jaws and the hard food processing might be associated with the unique hind protrusion (cleithral “humeral” process) of the dermal pectoral girdle of Hsianwenia.

参考文献

[1] Arratia G, Schultze H P, 1989. The composition of the caudal skeleton of teleosts (Actinopterygii: Osteichthyes). Zool J Linn Soc, 97:189-231
[2] Cao W X, Chen Y Y, Wu Y F et al., 1981. Origin and evolution of Schizothoracine fishesin relation to the upheaval of the Qinghai-Xizang Plateau. In: Li Q F ed. Studies on the Period, Amplitude and Type of Uplift of the Qinghai-Xizang Plateau: the Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences. Beijing: Science Press. 118-130
[3] Chang M M, Miao D S, 2016. Review of the Cenozoic fossil fishes from the Tibetan Plateau and their bearings on paleoenvironment. Chinese Sci Bull, 61:981-995
[4] Chang M M, Wang X M, Liu H Z et al., 2008. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proc Nat Acad Sci USA, 105(36):13246-13251
[5] Chang M M, Miao D S, Wang N, 2010. Ascent with modification: fossil fishes witnessed their own group’s adaptation to the uplift of the Tibetan Plateau during the late Cenozoic. Paper presented at the Darwin’s Heritage Today: Proceedings of the Darwin 200 Beijing International Conference. Beijing: Higher Education Press. 60-75
[6] Chen G J, Liu J, 2007. First fossil barbin (Cyprinidae, Teleostei) from Oligocene of Qaidam Basin in northern Tibetan Plateau. Vert PalAsiat, 45:330-341
[7] Chen X L, Yue P Q, Lin R D, 1984. Major groups within the family Cyprinidae and their phylogenetic relationships. Acta Zootaxon Sin, 9:424-440
[8] Chen Y Y, Chen Y F, Liu H Z, 1996. Studies on the position of the Qinghai-Xizang Plateau region in zoogeographic divisions and its Eastern demarcation line. Acta Hydrobiol Sin, 20:97-103
[9] Chu Y T, 1935. Comparative studies on the scales and on the pharyngeals and their teeth in Chinese cyprinids, with particular reference to taxonomy and evolution. Biol Bull St. John’s Univ, 2:1-290
[10] Conway K W, 2011. Osteology of the South Asian Genus Psilorhynchus McClelland, 1839 (Teleostei: Ostariophysi: Psilorhynchidae), with investigation of its phylogenetic relationships within the order Cypriniformes. Zool J Linn Soc, 163:50-144
[11] Conway K W, Chen W J, Mayden L R, 2008. The “Celestial Pearl danio” is a miniature Danio (s.s) (Ostariophysi: Cyprinidae): evidence from morphology and molecules. Zootaxa, 1686:1-28
[12] Deng T, Wu F X, Su T et al., 2020. Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Sci China Earth Sci, 63(2):172-187
[13] Diogo R, 2005. Morphological, Evolution, Aptations, Homoplasies, Constraints and Evolutionary Trends: Catfishes as a Case Study on General Plylogeny and Macroevolution. Enfield: Science Publishers. 1-491
[14] Fang X M, Wu F L, Han W X et al., 2008. Plio-Pleistocene drying process of Asian inland: sporopollen and salinity records from Yahu Section in the Central Qaidam Basin. Quat Sci, 28(5):874-882
[15] Fang X M, Dupont-Nivet G, Wang C S et al., 2020. Revised chronology of central Tibet uplift (Lunpola Basin). Sci Adv, 6: eaba7298
[16] Gaudant J, 1979. “Pachylebiascrassicaudus (Agassiz) (Poisson téléostéen, Cyprinodontiforme), un constituent majeur de l’ichthyofaune du Messinien continental du Bassin Méditerranéen. Géobios, 12:47-73
[17] Gaudant J, Guerrera F, Savelli D, 2015. Nouvelles données sur le Messinien de Méditerranée occidentale: Les gisements à Aphanius crassicaudus (Agassiz) (poisons téléostéens, cyprinodontiformes) des Marches (Italie). Geodinam Acta, 2(4):185-196
[18] Gidmark N J, Tarrant J C, Brainerd E L, 2014. Convergence in morphology and masticatory function between the pharyngeal jaws of grass carp, Ctenopharyngodon idella, and oral jaws of amniote herbivores. J Exp Biol, 217:1925-1932
[19] Kent-Corson M L, Ritts B D, Zhuang G S et al., 2009. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet Sci Lett, 282:158-166
[20] Li L, Garzione C N, Pullen A et al., 2016. Early-middle Miocene topographic growth of the northern Tibetan Plateau: stable isotope and sedimentation evidence from the southwestern Qaidam Basin. Palaeogeogr Palaeoclimatol Palaeoecol, 461:201-213
[21] Li L L, Wu C D, Fan C F et al., 2017. Carbon and oxygen isotopic constraints on paleoclimate and paleoelevation of the southwestern Qaidam basin, northern Tibetan Plateau. Geosci Front, 8(5):1175-1186
[22] Meng Q W, Su J X, Li W D, 1987. Comparative Anatomy of Fishes. Beijing: Science Press. 1-403
[23] Meunier F J, Gaudant J, 1987. Sur un cas de pachyostose chez un poisson du Miocéne terminal du basin méditerranéen, Aphanius crassicaudus (Agassiz), (Teleostei, Cyprinodontidae). C R Acad Sci Paris (Sér 2), 305:925-928
[24] Miao Y F, Fang X M, Wu F L et al., 2013. Late Cenozoic continuous aridification in the western Qaidam Basin: evidence from sporopollen records. Clim Past, 9(4):1863-1877
[25] Patterson C, 1975. The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Philos Trans R Soc Lond B Biol Sci, 269:275-579
[26] Patterson C, 1977. Cartilage bones, dermal bones and membrane bones, or the exoskeleton versus the endoskeleton. In: Andrews S M ed. Problems in Vertebrate Evolution, Vol 4. London: Academic Press. 77-121
[27] Patterson C, Johnson G D, 1995. The Intermuscular Bones and Ligaments of Teleostean Fishes. Washington: Smithsonian Institution Press. 1-83
[28] Sibbing F A, 1982. Pharyngeal mastication and food transport in the carp (Cyprinus carpio L.): a cineradiographic and electromyographic study. J Morphol, 172(2):223-258
[29] Song B W, Spicer R A, Zhang K X et al., 2020. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth Planet Sci Lett, 537:1-10
[30] Sorbini L, Tirapelle R, 1979. Messinian fossil fish of the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol, 29:143-154
[31] Su T, Farnsworth A, Spicer R A et al., 2019. No high Tibetan Plateau until the Neogene. Sci Adv, 5: eaav2189.
[32] Tao W J, Yang L, Mayden R L et al., 2019. Phylogenetic relationships of Cypriniformes and plasticity of pharyngeal teeth in the adaptive radiation of cyprinids. Sci China Life Sci, 62:553-565
[33] Wang N, 2010. The Evolution of the Schizothoracinae During the Cenozoic and the Uplift of the Tibetan Plateau. Beijing: Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology. 1-106
[34] Wang N, Chang M M, 2010. Pliocene cyprinids (Cypriniformes, Teleostei) from Kunlun Pass Basin, Northeastern Tibetan Plateau and their bearings on development of water system and uplift of the area. Sci China Earth Sci, 53:485-500
[35] Wang N, Chang M M, 2012. Discovery of fossil Nemacheilids (Cypriniformes, Teleostei, Pisces) from the Tibetan Plateau, China. Sci China Earth Sci, 55:714-727
[36] Wang N, Wu F X, 2015. New Oligocene cyprinid in the Central Tibetan Plateau documents the pre-uplift tropical lowlands. Ichthyol Res, 62(3):274-285
[37] Wang X M, Qiu Z D, Li Q et al., 2007. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 254:363-385
[38] Wang X M, Wang Y, Li Q et al., 2015. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: progress and prospects. Gondwana Res, 27:1335-1354
[39] Weitzman S H, 1962. The osteology of Brycon meeki, a generalized characid fish, with an osteological definition of the family. Stanford Ichthy Bull, 8:1-77
[40] Wu F X, Miao D S, Chang M M et al., 2017. Fossil climbing perch and associated plant megafossils indicate a warm and wet Central Tibet during the late Oligocene. Sci Rep, 7:878
[41] Wu F X, He D K, Fang G Y et al., 2019. Into Africa via Docked India: a fossil climbing perch from the Oligocene of Tibet helps solve the anabantid biogeographical puzzle. Sci Bull, 64(7):455-463
[42] Wu Y F, Chen Y Y, 1980. Fossil cyprinid from the late Tertiary of North Xizang, China. Vert PalAsiat, 18:15-22
[43] Wu Y F, Wu C Z, 1992. The Fishes of the Qinghai-Xizang Plateau. Chengdu: Sichuan Science & Technology Publishing House. 1-599
[44] Yang L, Sado T, Hirt M V et al., 2015. Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol, 85:97-116
[45] Yang T, Zhang L, Li W J et al., 2018. New schizothoracine from Oligocene of Qaidam Basin, northern Tibetan Plateau, China, and its significance. J Vert Paleont, 38:e1442840
[46] Yin A, Dang Y Q, Zhang M et al., 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geol Soc Am Bull, 120:847-876
[47] Yu X J, Guo Z J, Fu S T, 2015. Endorheic or exorheic: differential isostatic effects of Cenozoic sediments on the elevations of the cratonic basins around the Tibetan Plateau. Terra Nova, 27:21-27
[48] Zhuang G S, Brandon M T, Pagani M et al., 2014. Leaf wax stable isotopes from northern Tibetan Plateau: implications for uplift and climate since 15 Ma. Earth Planet Sci Lett, 390:186-198
文章导航

/