欢迎访问《古脊椎动物学报》官方网站,今天是

甘肃临夏盆地中新世鬣狗科一新属新种

展开
  • 1 美国Maxilla and Mandible有限公司 纽约 10024
    2 美国加州大学伯克利分校,加州大学古生物博物馆 伯克利 94720
    3 美国纽约自然历史博物馆 纽约 10024
    4 美国洛杉矶自然历史博物馆 洛杉矶 90007
    5 美国纽约理工大学医学院 纽约 11568
    6 中国科学院古脊椎动物与古人类研究所 北京 100044
    7 中国科学院大学 北京 100049
    8 美国加州大学洛杉矶分校牙医学院 洛杉矶 90095

收稿日期: 2021-05-25

  网络出版日期: 2021-10-26

基金资助

美国科学基金会(DEB-1257572);美国纽约自然历史博物馆Frick博士后项目2013-2016;美国怀俄明恐龙国际有限责任公司和美国纽约Maxilla and Mandible有限公司资助

A new aardwolf-line fossil hyena from Middle and Late Miocene deposits of Linxia Basin, Gansu, China

Expand
  • 1 Maxilla and Mandible, Ltd 105 West 86th Street Suite # 117, New York 10024, USA
    2 Department of Integrative Biology and Museum of Paleontology, University of California Berkeley 94720, USA
    3 Division of Paleontology, American Museum of Natural History New York 10024, USA
    4 Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County Los Angeles 90007, USA
    5 Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine Old Westbury, New York 11568, USA
    6 Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China
    7 University of Chinese Academy of Sciences Beijing 100049, China
    8 School of Dentistry, University of California Los Angeles 90095, USA

Received date: 2021-05-25

  Online published: 2021-10-26

摘要

非洲土狼(Proteles cristatus)是鬣狗科中牙齿最为退化的一个种类,与其他化石及现生鬣狗物种粗壮的碎骨型牙齿形态截然不同。它的化石记录可以追溯到上新世,但尚缺少中间过渡形态的化石记录,以致生物学家对这一罕见的食蚁性食肉目动物的起源演化缺乏清楚的认知。描述了鬣狗科化石一新属甘肃鬣狗(Gansuyaena), 并讨论其对于土狼起源的重要指示。所记述的标本为从海外收回的甘肃临夏盆地新近纪材料,包括两件破损头骨和下颌。基于甘肃鬣狗的形态特征,进行了一系列的系统发育分析,结果显示Proteles, Mesoviverrops, PlioviverropsGansuyaena组成一个相对原始的鬣狗类群,即土狼亚科(Protelinae)。而且,新的形态证据支持土狼亚科在形态粗壮的鬣狗亚科出现之前就已形成一个独立的支系。

本文引用格式

Henry GALIANO, 曾志杰, Nikos SOLOUNIAS, 王晓鸣, 邱占祥, Stuart C. WHITE . 甘肃临夏盆地中新世鬣狗科一新属新种[J]. 古脊椎动物学报, 2022 , 60(2) : 81 -116 . DOI: 10.19615/j.cnki.2096-9899.211025

Abstract

The aardwolf Proteles cristatus is the only known hyaenid, living or extinct, to exhibit an extremely reduced dentition related to its termite-specializing diet. The fossil record of extant aardwolves extends to 2 to 4 million years ago, but records that inform its evolutionary origins are essentially nonexistent. Such circumstance renders it difficult to place this unusual hyena in the broader evolutionary context of small-bodied hyaenid species in Eurasian Neogene deposits. Here we describe a new genus and species of a small-bodied hyaenid, Gansuyaena megalotis, representing the closest morphological link to aardwolves to date. This new fossil hyena is based on a skull with associated mandible, a rostrum preserving several teeth, and several referred specimens. The new specimens were discovered in Neogene deposits in Linxia Basin, Gansu Province, China. Phylogenetic analysis indicates that among early hyaenids, G. megalotis is most closely related, but unlikely ancestral, to the living aardwolf. Also recognized in this new species are the fossils previously referred to “Protictitherium” aff. P. gaillardi from Pasalar, Turkey. Additionally, “Plioviverropsguerini from Los Mansuetos, Spain is interpreted to represent a second Gansuyaena species. In addition to the living aardwolf, Proteles cristatus, our analyses suggest that the proteline lineage includes the extinct genera Gansuyaena, Mesoviverrops, and Plioviverrops. Although the precise timing and geographic location of evolutionary divergence between the aardwolf and Gansuyaena remain elusive, critical new morphological information provided by Gansuyaena specimens reinforce findings from recent genomic analyses that the aardwolf lineage has an ancient origin from small-bodied stem hyaenids prior to the appearance of large and robust bone-cracking hyaenines.

参考文献

[1] Bernor R L, Tobien H, 1990. The mammalian geochronology and biogeography of Paşalar (Middle Miocene, Turkey). J Hum Evol, 19: 551-568
[2] Colbert E H, 1939. Carnivora of the Tung Gur Formation of Mongolia. Bull Am Mus Nat Hist, 76: 47-81
[3] Crusafont-Pairó M, Petter G, 1969. Contribution a l’etude des Hyaenidae. La sous-famille des Ictitheriinae. Ann Paleontol Vertebr, 55: 87-127
[4] de Beaumont G, 1968. Observations sur les Herpestinae (Viverridae, Carnivora) de l’oligocene superieur avec quelques remarques sur des Hyaenidae du neogene. Arch Sci, 20: 79-107
[5] de Beaumont G, 1969. Breves remarques sur Plioviverrops Kretzoi (Carnivora). Bull Soc Vaudoise Sci Nat, 70(6): 247-253
[6] de Beaumont G, Mein P, 1972. Recherches sur le genre Plioviverrops Kretzoi (Carnivora, ?Hyaenidae). Arch Sci Geneve, 25: 383-394
[7] de Vries J L, Pirk C W W, Bateman P W, et al. 2011. Extension of the diet of an extreme foraging specialist, the aardwolf (Proteles cristata). Afr Zool, 46: 194-196
[8] Deng T, Qiu Z X, Wang B Y, et al. 2013. Chapter 9. Late Cenozoic biostratigraphy of the Linxia Basin, northwestern China. In: Wang X M, Flynn L J, Fortelius M eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 243-273
[9] Depéret C, 1892. La fauna de mammiféres miocénes de La Grive-Saint-Alban (Isere). Arch Mus Hist Nat Lyon, 5: 1-89
[10] Fang X M, Wang J Y, Zhang W L, et al. 2016. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research. Glob Planet Change, 145: 78-97
[11] Filhol H, 1883. Note sur quelques Mammifères fossiles de l’époque miocène. Publ Mus Confluences, 3: 1-99
[12] Forsyth-Major C I, 1903. III.-New Carnivoka from the Middle Miocene of La Grive-Saint-Alban, Isère, France. Geol Mag, 10: 534-538
[13] Gaillard C, 1899. Mammifères miocènes nouveaux ou peu connus de la Grive-Saint-Alban (Isère). Publ Mus Confluences, 7: 1-11
[14] Galiano H, Frailey D, 1977. Chasmaporthetes kani, new species from China, with remarks on phylogenetic relationships of genera within the Hyaenidae (Mammalia, Carnivora). Am Mus Novit, 2632: 1-16
[15] Gaudry A, 1862. Animaux fossiles et géologie de l’Attique: d’après les recherches faites en 1855-56 et en 1860 sous les auspices de l’Académie des Sciences. Paris: F. Savy. 1-474
[16] Granger D E, Gibbon R J, Kuman K, et al. 2015. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan. Nature, 522: 85-88
[17] Gregory W K, 1910. The orders of mammals. Bull Am Mus Nat Hist, 27: 1-524
[18] Gregory W K, Hellman M, 1939. On the evolution and major classification of the civets (Viverridae) and allied fossil and recent Carnivora: a phylogenetic study of the skull and dentition. Proc Am Philos Soc, 81: 309-392
[19] Hendey Q B, 1974. New fossil carnivores from the Swartkrans australopithecine site (Mammalia: Carnivora). Ann Transvaal Mus, 29: 27-47
[20] Hough M J, 1953. Auditory region in North American fossil Felidae; its significance in phylogeny. US Geol Surv Prof Pap, 243-G: 95-115
[21] Hunt Jr R M, 1974. The auditory bulla in Carnivora: an anatomical basis for reappraisal of carnivore evolution. J Morphol, 143: 21-75
[22] Hunt Jr R M, 1987. Evolution of the aeluroid Carnivora: significance of auditory structure in the nimravid cat Dinictis. Am Mus Novit, 2886: 1-74
[23] Hunt Jr R M, 1989. Evolution of the aeluroid Carnivora: significance of the ventral promontorial process of the petrosal, and the origin of basicranial patterns in the living families. Am Mus Novit, 2930: 1-32
[24] Hunt Jr R M, 1991. Evolution of the aeluroid Carnivora: viverrid affinities of the Miocene carnivoran Herpestides. Am Mus Novit, 3023: 1-34
[25] Hunt Jr R M, 1998. Evolution of the aeluroid Carnivora: diversity of the earliest aeluroids from Eurasia (Quercy, Hsanda-Gol) and the origin of felids. Am Mus Novit, 3252: 1-65
[26] Hunt Jr R M, 2001. Basicranial anatomy of the living linsangs Prionodon and Poiana (Mammalia, Carnivora, Viverridae), with comments on the early evolution of aeluroid carnivorans. Am Mus Novit, 3330: 1-24
[27] Hunt Jr R M, Solounias N, 1991. Evolution of the aeluroid Carnivora: hyaenid affinities of the Miocene carnivoran Tungurictis spocki from Inner Mongolia. Am Mus Novit, 3030: 1-25
[28] Hunt Jr R M, Tedford R H, 1993. Phylogenetic relationships within the aeluroid Carnivora and implications of their temporal and geographic distribution. In: Szalay F, Novacek M, McKenna M eds. Mammal Phylogeny: Placentals. New York: Springer-Verlag. 53-73
[29] ICZN, 1999. International Code of Zoological Nomenclature. 4th ed [available online at http://www.iczn.org/iczn/index.jsp]
[30] Jenks S, Werdelin L, 1998. Chapter 2:taxonomy and systematics of living hyaenas (Family Hyaenidae). In: Mills G, Hofer H eds. IUCN, Hyaenas: Status Survey and Conservation Action Plan. Oxford: Information Press. 8-17
[31] Jin Z D, Li F C, Cao J J, et al. 2006. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology, 80: 147-163
[32] Joeckel R M, 1998. Unique frontal sinuses in fossil and living Hyaenidae (Mammalia, Carnivora): description and interpretation. J Vert Paleont, 18: 627-639
[33] Koehler C E, Richardson P R K, 1990. Proteles cristatus. Mamm Species, 363: 1-6
[34] Koepfli K-P, Jenks S M, Eizirik E, et al. 2006. Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Mol Phylogenet Evol, 38: 603-620
[35] Kretzoi M, 1938. Die Raubtiere von Gombaszög nebst einer übersicht der Gesamtfauna (Ein beitrag zur stratigraphie des Altquartaers). Ann Mus Natl Hung, 31: 88-157
[36] Kretzoi M, 1945. Bemerkungen über das Raubtiersystem. Ann Mus Natl Hung, 38: 59-83
[37] Kruuk H, Sands W A, 1972. The aardwolf (Proteles cristata Sparrman) 1783 as predator of termites. Afr J Ecol, 10: 211-227
[38] Kurtén B, 1976. Fossil Carnivora from the Late Tertiary of Bled Douarah and Cherichira, Tunisia. Notes Serv Geol, 42: 177-214
[39] Merriam J C, Stock C, 1932. The Felidae of Rancho La Brea. Carnegie Inst Wash Publ, 422: 1-436
[40] Pei W C, 1934. On the Carnivora from locality 1 of Choukoutien. Palaeont Sin Ser C, 8: 1-217
[41] Pilgrim G E, Hopwood A T, 1931. Catalogue of the Pontian Carnivora of Europe in the Department of Geology. London:Printed by order of the Trustees of the British Museum. 1-174
[42] Qiu Z X, Ye J, Cao J X, 1988. A new species of Percrocuta from Tongxin, Ningxia. Vert PalAsiat, 26: 116-127
[43] Qiu Z X, Deng T, Wang B Y, 2004. Early Pleistocene mammalian fauna from Longdan, Dongxiang, Gansu, China. Palaeont Sin, New Ser C, 27: 1-198
[44] Radinsky L, 1975. Viverrid neuroanatomy: phylogenetic and behavioral implications. J Mammal, 56: 130-150
[45] Radinsky L B, 1982. Evolution of skull shape in carnivores. 3. The origin and early radiation of the modern carnivore families. Paleobiology, 8: 177-195
[46] Rao H Y, Yang Y M, Liu J Y, et al. 2020. Palaeoproteomic analysis of Pleistocene cave hyenas from east Asia. Sci Rep, 10: 16674
[47] Schmidt-Kittler N, 1976. Raubtiere aus dem Jungtertiär Kleinasiens. Palaeontogr Abt A, 155: 1-131
[48] Sheng G L, Soubrier J, Liu J Y, et al. 2014. Pleistocene Chinese cave hyenas and the recent Eurasian history of the spotted hyena, Crocuta crocuta. Mol Ecol, 23: 522-533
[49] Solounias N, 1981. The Turolian Fauna from the Island of Samos, Greece. Basel: S. Karger AG. 1-232
[50] Thenius E, 1966. Zur stammesgeschichte der hyanen (Carnivora, Mammalia). Z Saugertierkd, 31: 293-300
[51] Torre D, 1989. Plioviverrops faventinus n. sp., a new carnivore of late Messinian age. Boll Della Soc Paleont Ital, 28: 323-327
[52] Turner A, 1993. New fossil carnivore remains. In: Brain C K ed. Swartkrans: a Cave’s Chronicle of Early Man. Transvaal Mus Monogr, 8: 151-165
[53] Turner A, 1997. New fossil carnivore remains from Sterkfontein hominid site (Mammalia: Carnivora). Ann Transvaal Mus, 34: 319-347
[54] Turner A, Antón M, Werdelin L, 2008. Taxonomy and evolutionary patterns in the fossil Hyaenidae of Europe. Geobios, 41: 677-687
[55] Villalta Comella J F de, Crusafont-Pairó M, 1943. Los vertebrados del mioceno continental de la cuenca Valles-Panades (provincia de Barcelona), I, Insectivoros; II, Carnivoros. Bol Inst Geol Min Esp, 56: 145-336
[56] Villalta Comella J F de, Crusafont-Pairó M, 1945. Nuevas aportaciones al conocimiento de los carnivoros pontienses del Valles-Penedes. Barcelona: Inst Geolo?gico, Pub VII (Misc Almer Part 1). 81-121
[57] Viret J, 1951. Catalogue critique de la faune des mammiferes miocenes de la Grive Saint-Alban (Isere); premiere partie, chiropteres, carnivores, edentes pholidotes. Publ Mus Confluences, 3: 1-104
[58] Wang X M, 2004. New materials of Tungurictis (Hyaenidae, Carnivora) from Tunggur Formation, Nei Mongol. Vert PalAsiat, 42: 144-153
[59] Wang X M, Flynn L J, Fortelius M, 2013. Toward a continental Asian biostratigraphic and geochronologic framework. In: Wang X M, Flynn L J, Fortelius M eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 1-25
[60] Wang X M, Tseng Z J, Wu W Y, et al. 2020. A new species of Tungurictis Colbert, 1939 (Carnivora, Hyaenidae) from the Middle Miocene of Junggar Basin, northwestern China and the early divergence of basal hyaenids in East Asia. Geodiversitas, 42: 29-45
[61] Werdelin L, 1988. Studies of fossil hyaenas: the genera Thalassictis Gervais ex Nordmann, Palhyaena Gervais, Hyaenictitherium Kretzoi, Lycyaena Hensel and Palinhyaena Qiu, Huang & Guo. Zool J Linn Soc, 92: 211-265
[62] Werdelin L, Solounias N, 1991. The Hyaenidae: taxonomy, systematics and evolution. Fossils Strata, 30: 1-104
[63] Westbury M V, De Cahsan B, Dalerum F, et al. 2019. Aardwolf population diversity and phylogenetic positioning inferred using complete mitochondrial genomes. Afr J Wildl Res, 49: 27-33
[64] Westbury M V, Le Duc D, Duchêne D A, et al. 2021. Ecological specialization and evolutionary reticulation in extant Hyaenidae. Mol Biol Evol, 1-14, doi: 10.1093/molbev/msab055
[65] Winge H, Deichmann E, Allen G M, et al. 1941. The interrelationships of the mammalian genera. Vol. 2, Rodentia, Carnivora, Primates. Copenhagen: C.A. Reitzel. 1-418
文章导航

/