欢迎访问《古脊椎动物学报》官方网站,今天是

临夏盆地晚中新世鸵鸟化石的特异保存

展开
  • 1 中国科学院古脊椎动物与古人类研究所,中国科学院脊椎动物演化与人类起源重点实验室 北京 100044
    2 中国科学院生物演化与环境卓越创新中心 北京 100044
    3 中国科学院大学 北京 100049

收稿日期: 2020-12-25

  网络出版日期: 2021-07-20

基金资助

中国科学院百人计划(KC217113);国家自然科学基金面上项目(41772013);中国科学院战略性先导科技专项(XDA9050102);中国科学院战略性先导科技专项(XDA20070203);中国科学院战略性先导科技专项(XDB26000000);第二次青藏高原科考项目(2019QZKK0705);中国科学院院长奖学金资助

Exceptional preservation of an extinct ostrich from the Late Miocene Linxia Basin of China

Expand
  • 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044
    2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044
    3 University of Chinese Academy of Sciences Beijing 100049

Received date: 2020-12-25

  Online published: 2021-07-20

摘要

报道了来自西北地区中新世晚期临夏盆地的一件鸵鸟化石,该标本包括鸵鸟的部分颈椎以及气管,由于缺乏物种级别的鉴定特征,被暂定为鸵鸟(Struthio sp.)。新标本还保留了平齿三趾马(Hipparion platyodus)的部分头骨。利用多种分析测试方法,对该鸵鸟骨骼的微观特征进行了详细研究,以探讨临夏鸵鸟的埋藏条件和古气候背景。在鸵鸟化石的一个脱矿化的骨碎片中发现了软组织(内源性血管和红细胞的化石残留)。同时光学显微镜和扫描电镜成像显示,化石组织切片中存在显著的细菌改变(骨侵蚀现象)。这是中新世临夏盆地脊椎动物遗体中软组织的首次报道。通过相关的地质和沉积学证据与新的古生物数据相结合,认为季风气候可能是造成鸟类化石早期埋葬期间微生物侵蚀的原因,接下来延续了8 Ma左右的盆地剧烈的干旱化作用,导致了微生物活动的停止,并进一步导致了成岩作用后期孔隙方解石的沉淀。这项工作显示出跨学科(包括形态学、沉积学、地球化学和软组织分析)研究可以更好地揭示中国西北临夏盆地柳树组的中新世晚期的动物群更替、气候和分子保存。

本文引用格式

李志恒, 艾莉达, Thomas A. STIDHAM, 王敏, 邓涛 . 临夏盆地晚中新世鸵鸟化石的特异保存[J]. 古脊椎动物学报, 2021 , 59(3) : 229 -244 . DOI: 10.19615/j.cnki.1000-3118.210309

Abstract

Here we report a new avian fossil from the Late Miocene Linxia Basin, Northwest China, with exceptional soft-tissue preservation. This specimen preserves parts of cervical vertebrae and tracheal rings that are typically ostrich-like, but cannot be diagnosed at the species level. Therefore, the fossil is referred to Struthio sp. The new specimen was preserved in association with a partial skull of Hipparion platyodus. To explore the soft tissue preservation in a fossil deposited in a terrestrial setting, we applied a combination of analytic methods to investigate the microscopic features of the fossilized avian bone. Bacterial alterations (bone bioerosion) were revealed by light microscopy and petrographic sections under SEM imaging. Soft-tissues (fossilized remnants of endogenous blood vessels and red blood cells) were preserved in one demineralized bone fragment and also observed in the in-situ ground-section. These are the first records of soft-tissue preservation in vertebrate remains from the Late Miocene Linxia Basin. Associated geological and sedimentological evidence combined with our new data provide insights into the postmortem taphonomic conditions of this ostrich specimen. A seasonal monsoon might have facilitated the microbial erosion penecontemporaneous with the burial of the specimen. This study encourages interdisciplinary research involving morphology, sedimentology, geochemistry, and histological soft-tissue analyses to better understand the Late Miocene faunal turnovers, climates, and fossil preservation in the Liushu Formation in northwestern China.

参考文献

[1] An Z, 2014. Late Cenozoic climate change in Asia: loess, monsoon and monsoon-arid environment evolution. Dordrecht Heidelberg, New York, London: Springer Science & Business Media. 1-587
[2] An Z, Kutzbach J E, Prell W L et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411:62-66
[3] Atalgin S H, Ates S, Kurtul I et al., 2018. Mineralization in the syrinx and caudal tracheal rings in the ostrich. Indian J Anim Res, 52:33-36
[4] Bailleul A M, O’Connor J K, Li Z H et al., 2020. Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses. Commun Biol, 3:399
[5] Briggs D E G, 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu Rev Earth Plant Sci, 31:275-301
[6] Cobley M J, Rayfield E J, Barrett P M, 2013. Inter-vertebral flexibility of the ostrich neck: implications for estimating sauropod neck flexibility. PLoS One, 8:e72187
[7] Deng T, 2005. Character, age and ecology of the Hezheng Biota from northwestern China. China. Acta Geol Sin-Engl, 79:739-750
[8] Deng T, 2009. Late Cenozoic environmental changes in the Linxia Basin (Gansu, China) as indicated by cenograms of fossil mammals. Vert PalAsiat, 47:282-298
[9] Deng T, Wang X M, Ni X J et al., 2004. Sequence of the Cenozoic mammalian faunas of the Linxia Basin in Gansu, China. Acta Geol Sin-Engl, 78:8-14
[10] Deng T, Qiu Z X, Wang B Y et al., 2013. Late Cenozoic biostratigraphy of the Linxia Basin, northwestern China. In: Wang X M, Fortelius M, Flynn L eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 243-273
[11] Fan M, Dettman D L, Song C et al., 2007. Climatic variation in the Linxia Basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma: the stable isotope record. Palaeogeogr, Palaeoclimatol, Palaeoecol, 247:313-328
[12] Fang X, Garzione C, Van der Voo R et al., 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet Sci Lett, 210:545-560
[13] Fernández-Jalvo Y, Andrews P, Pesquero D et al., 2010. Early bone diagenesis in temperate environments: Part I: surface features and histology. Palaeogeogr, Palaeoclimatol, Palaeoecol, 288:62-81
[14] Hackett C J, 1981. Microscopical focal destruction (tunnels) in exhumed human bones. Med Sci Law, 21:243-265
[15] Hedges R E M, 2002. Bone diagenesis: an overview of processes. Archaeometry, 44:319-328
[16] Hou L H, Zhou Z H, Zhang F C et al., 2005. A Miocene ostrich fossil from Gansu Province, northwest China. Chinese Sci Bull, 50:1808-1810
[17] Junka A, Szymczyk P, Ziółkowski G et al., 2017. Bad to the bone: on in vitro and ex vivo microbial biofilm ability to directly destroy colonized bone surfaces without participation of host immunity or osteoclastogenesis. PLoS One, 12:e0169565
[18] Li Z H, Zhou Z H, Deng T et al., 2014. A falconid from the Late Miocene of northwestern China yields further evidence of transition in Late Neogene steppe communities. Auk, 131:335-350
[19] Li Z H, Clarke J A, Zhou Z H et al., 2016. A new Old World vulture from the Late Miocene of China sheds light on Neogene shifts in the past diversity and distribution of the Gypaetinae. Auk, 133:615-625
[20] Li Z H, Clarke J A, Eliason C M et al., 2018. Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China. Sci Rep, 8:8099
[21] Liang Z, Deng T. 2005. Age structure and habitat of the rhinocerosChilotherium during the Late Miocene in the Linxia Basin, Gansu, China. Vert PalAsiat, 43:219-230
[22] Ma Y, Li J, Fang X, 1998. Records of the climatic variation and pollen flora from the red beds at 30.6-5.0 Ma in Linxia district. Chinese Sci Bull, 43:301-304
[23] McLelland J, 1989. Larynx and trachea. In: King A S, Mclelland J eds. Form and Function in Birds. London, Inglaterra: Academic Press. 69-103
[24] Musser G, Li Z H, Clarke J A, 2019. A new species of Eogruidae (Aves: Gruiformes) from the Miocene of the Linxia Basin, Gansu, China: evolutionary and climatic implications. Auk, 137:1-13
[25] Pawlicki R, Nowogrodzka-Zagórska M, 1998. Blood vessels and red blood cells preserved in dinosaur bones. Ann Anat, 180:73-77
[26] Pawlicki R, Korbel A, Kubiak H, 1966. Cells, collagen fibrils and vessels in dinosaur bone. Nature, 211:655
[27] Pesquero M D, Ascaso C, Alcalá L et al., 2010. A new taphonomic bioerosion in a Miocene lakeshore environment. Palaeogeogr, Palaeoclimatol, Palaeoecol, 295:192-198
[28] Pinhasi R, Mays S, 2008. Advances in Human Palaeopathology. Chichester: John Wiley & Sons. 1-389
[29] Qiang X, An Z, Song Y et al., 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci China Earth Sci, 54:136-144
[30] Qiu Z X, Qiu Z D, Deng T et al., 2013. Neogene land mammal stages/ages of China: toward the goal to establish an Asian land mammal stage/age scheme. In: Wang X M, Fortelius M, Flynn L eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 29-90
[31] Schweitzer M H, Wittmeyer J L, Horner J R et al., 2005. Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science, 307:1952-1955
[32] Schweitzer M H, Suo Z, Avci R et al., 2007. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science, 316:277-280
[33] Schweitzer M H, Zheng W, Cleland T et al., 2014. A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proc R Soc Lond B, 281:20132741
[34] Turner-Walker G, 2019. Light at the end of the tunnels? The origins of microbial bioerosion in mineralised collagen. Palaeogeogr, Palaeoclimatol, Palaeoecol, 529:24-38
[35] Turner-Walker G, Jans M, 2008. Reconstructing taphonomic histories using histological analysis. Palaeogeogr, Palaeoclimatol, Palaeoecol, 266:227-235
[36] Wang J Y, Fang X, Zhang W L et al., 2010a. Magnetostratigraphy and its implications of the Heilinding section, the Linxia Basin, Gansu Province, China. Marine Geol Quat Geol, 30:129-135
[37] Wang Y, Deng T, 2005. A 25 my isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau. Earth Planet Sci Lett, 236:322-338
[38] Wang Y, Fang X, Zhang T et al., 2010b. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: implications for climate change. Appl Geochem, 25:1478-1486
[39] Wang Y, Fang X, Zhang T et al., 2012. Distribution of biomarkers in lacustrine sediments of the Linxia Basin, NE Tibetan Plateau, NW China: significance for climate change. Sediment Geol, 243:108-116
[40] Wiemann J, Fabbri M, Yang T R et al., 2018. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat Commun, 9:4741
[41] Yin L, Zhu M, Knoll A H et al., 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446:661-663
[42] Zhang W, Appel E, Wang J Y et al., 2019. New paleomagnetic constraints for Platybelodon and Hipparion faunas in the Linxia Basin and their ecological environmental implications. Global Planet Change, 176:71-83
[43] Zhang Z, Sun J, 2011. Palynological evidence for Neogene environmental change in the foreland basin of the southern Tianshan range, northwestern China. Global Planet Change, 75:56-66
[44] Zhang Z, Huang Y, James H F et al., 2012. Two Old World vultures from the middle Pleistocene of northeastern China and their implications for interspecific competition and biogeography of Aegypiinae. J Vert Paleont, 32:117-124
[45] Zheng D W, Zhang P Z, Wan J L et al., 2003. Late Cenozoic deformation subsequence in northeastern margin of Tibet—Detrital AFT records from Linxia Basin. Sci China Ser D: Earth Sci, 46:266-275
[46] Zheng D W, Zhang P Z, Wan J L et al., 2006. Rapid exhumation at ~ 8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: implications for growth of the northeastern Tibetan Plateau margin. Earth Planet Sci Lett, 248:198-208
文章导航

/